SimplexCondNum< N, T > Class Template Reference

Implements the condition number quality metric. More...

#include <SimplexCondNum.h>

Inheritance diagram for SimplexCondNum< N, T >:
SimplexAdjJacQF< N, T > SimplexJacQF< N, T > SimplexModCondNum< N, T >

List of all members.

Public Types

typedef T Number
 The number type.
typedef Base::Vertex Vertex
 The class for a vertex.
typedef Base::Simplex Simplex
 The simplex type.
typedef Base::Matrix Matrix
 An NxN matrix.

Public Member Functions

Constructors etc.

 SimplexCondNum ()
 Default constructor. Un-initialized memory.
 SimplexCondNum (const SimplexCondNum &other)
 Copy constructor.
 SimplexCondNum (const Simplex &s)
 Construct from a simplex.
SimplexCondNumoperator= (const SimplexCondNum &other)
 Assignment operator.
 ~SimplexCondNum ()
 Trivial destructor.
Mathematical functions

Number operator() () const
 Return the condition number (kappa) quality metric.
Number operator() (const Simplex &simplex) const
 Return the condition number (kappa) quality metric.
void computeGradient (Vertex *gradient) const
 Calculate the gradient of the condition number (kappa) quality metric.

Protected Member Functions

Number computeFunction (Number snj, Number sna) const
 Return the quality metric given $ | S |^2 $ and $ | \Sigma |^2 $.

Detailed Description

template<int N, typename T = double>
class SimplexCondNum< N, T >

Implements the condition number quality metric.

Parameters:
N is the dimension.
T is the number type. By default it is double.

This class implements the condition number quality metric. Let $ S $ be the Jacobian matrix, $ \Sigma $ be its adjoint (scaled inverse), $ \sigma $ be the Jacobian determinant and $ | \cdot | $ be the Frobenius norm. The operator()() member function returns the condition number quality metric:

\[ \kappa = \frac{ |S| |\Sigma| }{ N \sigma }. \]

This quality metric is only defined for simplices with positive content. (The Jacobian determinant must be positive.)

computeGradient() calculates the gradient of the condition number metric.

Before evaluating the condition number metric, you must set the Jacobian matrix with setFunction() or set(). Before evaluating the gradient of the metric, you must set the Jacobian matrix and its gradient with set().


Member Function Documentation

template<int N, typename T = double>
void SimplexCondNum< N, T >::computeGradient ( Vertex gradient  )  const

Calculate the gradient of the condition number (kappa) quality metric.

Precondition:
The Jacobian determinant must be positive.

Let $ S $ be the Jacobian matrix, $ \Sigma $ be its scaled inverse, $ \sigma $ be the Jacobian determinant and $ | \cdot | $ be the Frobenius norm. The kappa function is

\[ \frac{ |S| |\Sigma| }{ N \sigma }. \]

Reimplemented in SimplexModCondNum< N, T >.

template<int N, typename T = double>
Number SimplexCondNum< N, T >::operator() ( const Simplex simplex  )  const [inline]

Return the condition number (kappa) quality metric.

Precondition:
The Jacobian determinant must be positive.
Returns:
Let $ S $ be the Jacobian matrix, $ \Sigma $ be its scaled inverse, $ \sigma $ be the Jacobian determinant and $ | \cdot | $ be the Frobenius norm. Return

\[ \frac{ |S| |\Sigma| }{ N \sigma }. \]

Reimplemented in SimplexModCondNum< N, T >.

References SimplexCondNum< N, T >::operator()(), and SimplexAdjJacQF< N, T >::setFunction().

template<int N, typename T = double>
Number SimplexCondNum< N, T >::operator() (  )  const

Return the condition number (kappa) quality metric.

Precondition:
The Jacobian determinant must be positive.
Returns:
Let $ S $ be the Jacobian matrix, $ \Sigma $ be its scaled inverse, $ \sigma $ be the Jacobian determinant and $ | \cdot | $ be the Frobenius norm. Return

\[ \frac{ |S| |\Sigma| }{ N \sigma }. \]

Reimplemented in SimplexModCondNum< N, T >.

Referenced by SimplexCondNum< N, T >::operator()().


The documentation for this class was generated from the following file:
Generated on Thu Jun 30 02:14:58 2016 for Computational Geometry Package by  doxygen 1.6.3