Point: Mathematical Functions

Functions

template<int N, typename T >
computeDotProduct (const ads::FixedArray< N, T > &x, const ads::FixedArray< N, T > &y)
 Return the dot product of x and y.
template<typename T >
ads::FixedArray< 3, T > computeCrossProduct (const ads::FixedArray< 3, T > &x, const ads::FixedArray< 3, T > &y)
 Return the cross product of x and y.
template<typename T >
void computeCrossProduct (const ads::FixedArray< 3, T > &x, const ads::FixedArray< 3, T > &y, ads::FixedArray< 3, T > *result)
 Compute the cross product of x and y.
template<typename T >
computeTripleProduct (const ads::FixedArray< 3, T > &a, const ads::FixedArray< 3, T > &b, const ads::FixedArray< 3, T > &c)
 The scalar triple product of three vectors: $a \cdot b \times c$.
template<typename T >
computeDiscriminant (const ads::FixedArray< 2, T > &p, const ads::FixedArray< 2, T > &q)
 Return the discriminant of the vectors.
template<typename T >
void computeAnOrthogonalVector (const ads::FixedArray< 3, T > &vector, ads::FixedArray< 3, T > *orthogonal)
 Compute an orthogonal vector.

Detailed Description


Function Documentation

template<typename T >
void computeCrossProduct ( const ads::FixedArray< 3, T > &  x,
const ads::FixedArray< 3, T > &  y,
ads::FixedArray< 3, T > *  result 
) [inline]

Compute the cross product of x and y.

This exists as an optimization of geom::cross(). With this function there is no need to construct an ads::FixedArray.

Generated on Thu Jun 30 02:14:58 2016 for Computational Geometry Package by  doxygen 1.6.3