c c # CJ volume burn in the line of pages 316-317, c # Charles L. Mader, Numerical Modelling of Detonations, c # Los Alamos series in basic and applied sciences, c # University of California Press, Berkeley and c # Los Angeles, 1979. c # Use this model only with Method(5)=1 or 3 and c # do not use a Riemann solver for the fluid part. c c # Ynew satisfies c # rho.lt.rho0 -> 1.d0.lt.Ynew c # rho0.le.rho.le.rhoJ -> 0.d0.le.Ynew.lt.1.d0 c # rhoJ.lt.rho -> Ynew.lt.0.d0 c # which means burning for Ynew.le.1.d0 c c Copyright (C) 2003-2007 California Institute of Technology c Ralf Deiterding, ralf@cacr.caltech.edu c c ========================================================= subroutine src(maxmx,maxmy,maxmz,meqn,mbc,ibx,iby,ibz, & mx,my,mz,q,aux,maux,t,dt,ibnd) c ========================================================= implicit double precision(a-h,o-z) include "cuser.i" c dimension q(meqn, 1-ibx*mbc:maxmx+ibx*mbc, & 1-iby*mbc:maxmy+iby*mbc,1-ibz*mbc:maxmz+ibz*mbc) dimension aux(maux, 1-ibx*mbc:maxmx+ibx*mbc, & 1-iby*mbc:maxmy+iby*mbc,1-ibz*mbc:maxmz+ibz*mbc) c do 10 k=1-ibnd*ibz*mbc,mz+ibnd*ibz*mbc do 10 j=1-ibnd*iby*mbc,my+ibnd*iby*mbc do 10 i=1-ibnd*ibx*mbc,mx+ibnd*ibx*mbc c if (aux(1,i,j,k).le.zt1.and. & aux(2,i,j,k).gt.rf) then q(1,i,j,k) = (1.d0-Yo)*rhoo q(2,i,j,k) = Yo*rhoo q(3,i,j,k) = 0.d0 q(4,i,j,k) = 0.d0 q(5,i,j,k) = uo*rhoo q(6,i,J,k) = po/gamma1 + 0.5d0*rhoo*uo**2 goto 5 endif c rho=q(1,i,j,k)+q(2,i,j,k) u=q(3,i,j,k)/rho v=q(4,i,j,k)/rho w=q(5,i,j,k)/rho Yold=q(2,i,j,k)/rho Ynew=1.d0-(1.d0/rho-V0)/(Vj-V0) if (Ynew.gt.1.d0.or.Yold.lt.Yact) & goto 5 if (Yold.lt.Ynew.and.Ynew.lt.0.5d0) & Ynew = 0.d0 if (Ynew.lt.0.d0) Ynew = 0.d0 if (Yold.le.Ynew) goto 5 Ps = gamma1*(q(6,i,j,k)-q(2,i,j,k)*q0- & 0.5d0*rho*(u**2+v**2+w**2)) if (Ynew.lt.0.9d0) Ps = (1.d0-Ynew)*Pj q(2,i,j,k)=rho*Ynew q(1,i,j,k)=rho-q(2,i,j,k) q(6,i,j,k)=Ps/gamma1+q(2,i,j,k)*q0+ & 0.5d0*rho*(u**2+v**2+w**2) 5 continue 10 continue c return end