• VTF
  • FSI
  • AMROC
  • SFC
  • Motion
  • STLIB
  • Main Page
  • src/equations/ip2eustd.f

    c -----------------------------------------------------
    c Predefined internal physical boundary conditions
    c for Euler equations in WENO solver
    c -----------------------------------------------------
    
    c Transformation of vector of conserved quantities
    c into primitives (rho,u,v,0,p,s1,s2,dc)
    
    c =====================================================
          SUBROUTINE it2eu(mx,my,meqn,q,qt)
    c =====================================================
          
          IMPLICIT NONE
    
          INTEGER mx, my, meqn
          DOUBLE PRECISION q(meqn,mx,my)
          DOUBLE PRECISION qt(meqn,mx,my)
          
    c      ---- Local variables
          INTEGER i, j, m, nvars, ierr
          DOUBLE PRECISION Temperature(1)
          
          call cles_getiparam('nvars', nvars, ierr)
    
          DO j = 1, my
             DO i = 1, mx 
                ! rho
                qt(1,i,j) = q(1,i,j)
                ! u, v, w
                do m=2, nvars
                   qt(m,i,j) = q(m,i,j)/q(1,i,j)
                enddo
                ! p
                call cles_eqstate(q(1,i,j),meqn,qt(1,i,j),nvars,1,0)
                ! temperature
                qt(nvars+1,i,j) = q(nvars+1,i,j)
                ! dcflag
                qt(nvars+2,i,j) = 0.0
                ! all others
                DO m=nvars+3, meqn
                   qt(m,i,j) = q(m,i,j)
                END Do
             ENDDO
          ENDDO
          
          RETURN
          END
    
    c -----------------------------------------------------
    c Construction of reflective boundary conditions from
    c mirrored primitive values and application in
    c conservative form in local patch in 2D
    c -----------------------------------------------------
    
    c =====================================================
          SUBROUTINE ip2eurfl(q,mx,my,lb,ub,meqn,nc,idx, 
         $     qex,xc,phi,vn,maux,auex,dx,time)
    c =====================================================
    
          IMPLICIT NONE
          
          INTEGER mx, my, meqn, maux, nc, idx(2,nc), lb(2), ub(2)
          DOUBLE PRECISION xc(2,nc), 
         $     phi(nc), vn(2,nc), auex(maux,nc), dx(2), time
          DOUBLE PRECISION q(meqn, mx, my)
          DOUBLE PRECISION qex(meqn,nc)
          
    c     ---- Local variables
          INTEGER i, j, n, m, stride, getindx, nvars, useViscous, ierr
          DOUBLE PRECISION u(2), ul
    
          call cles_getiparam('nvars', nvars, ierr)
          call cles_getiparam('useviscous', useViscous, ierr)
    
          stride = (ub(1) - lb(1))/(mx-1)
          
          DO n = 1, nc
             i = getindx(idx(1,n), lb(1), stride)
             j = getindx(idx(2,n), lb(2), stride)
             
             u(1) = -qex(2,n)
             u(2) = -qex(3,n)
    c          ---- Add boundary velocities if available
             if (maux.ge.2) then
                u(1) = u(1) + auex(1,n)
                u(2) = u(2) + auex(2,n)
             endif
             u(1) = 2.d0*u(1)
             u(2) = 2.d0*u(2)
             
    c          ---- Invert entire velocity vector for Navier-Stokes
             IF (useViscous.eq.1) THEN
                qex(2,n) = qex(2,n) + u(1)
                qex(3,n) = qex(3,n) + u(2)
    c             ---- Invert only normal velocity vector for Euler
             ELSE
                ul = u(1)*vn(1,n)+u(2)*vn(2,n)
                qex(2,n) = qex(2,n) + ul*vn(1,n) 
                qex(3,n) = qex(3,n) + ul*vn(2,n) 
             ENDIF
             
             q(1,i,j) = qex(1,n)
             do m=2, nvars
                q(m,i,j) = qex(m,n)*qex(1,n)
             enddo
             call cles_inveqst(q(1,i,j),meqn,qex(1,n),nvars,1,0)
             ! temperature
             q(nvars+1,i,j) = qex(nvars+1,n) 
             do m=nvars+3, meqn  ! skip dcflag
                q(m,i,j) = qex(m,n)
             enddo
          END DO
          
          RETURN
          END
    
    c -----------------------------------------------------
    c Injection of conservative extrapolated values in local patch
    c -----------------------------------------------------
    
    c =====================================================
          SUBROUTINE ip2euex(q,mx,my,lb,ub,meqn,nc,idx, 
         $     qex,xc,phi,vn,maux,auex,dx,time)
    c =====================================================
    
          IMPLICIT NONE
          
          INTEGER mx, my, meqn, maux, nc, idx(2,nc), lb(2), ub(2)
          DOUBLE PRECISION xc(2,nc), 
         $     phi(nc), vn(2,nc), auex(maux,nc), dx(2), time
          DOUBLE PRECISION q(meqn, mx, my)
          DOUBLE PRECISION qex(meqn,nc)
          
    c      ---- Local variables
          INTEGER i, j, n, m, stride, getindx, nvars, ierr
          DOUBLE PRECISION u, v, vl
          
          call cles_getiparam('nvars', nvars, ierr)
    
          stride = (ub(1) - lb(1))/(mx-1)
          
          DO n = 1, nc
             i = getindx(idx(1,n), lb(1), stride)
             j = getindx(idx(2,n), lb(2), stride)
             
             u   = qex(2,n)       
             v   = qex(3,n)
             
    c                 ----  Prescribe normal velocity vector
             vl = u*vn(1,n)+v*vn(2,n)
             qex(2,n) = vl*vn(1,n) 
             qex(3,n) = vl*vn(2,n) 
    
             ! rho
             q(1,i,j) = qex(1,n)
             ! rho (u,v,w)
             do m=2, nvars
                q(m,i,j) = qex(m,n)*qex(1,n)
             enddo
             ! E 
             call cles_inveqst(q(1,i,j),meqn,qex(1,n),nvars,1,0)
             ! temperature
             q(nvars+1,i,j) = qex(nvars+1,n) 
             do m=nvars+3, meqn  ! skip dcflag
                q(m,i,j) = qex(m,n)
             enddo
          END DO
          
          RETURN
          END
          
    
    

<