c c c c ================================================= function zeroin(ax,bx,f,tol) c ================================================= implicit double precision (a-h,o-z) external f c c a zero of the function f(x) is computed in the interval ax,bx. c (Standard routine from netlib) c c input.. c c ax left endpoint of initial interval c bx right endpoint of initial interval c f function subprogram which evaluates f(x) for any x in c the interval ax,bx c tol desired length of the interval of uncertainty of the c final result ( .ge. 0.0) c c output.. c c zeroin abcissa approximating a zero of f in the interval ax,bx c c c it is assumed that f(ax) and f(bx) have opposite signs c without a check. zeroin returns a zero x in the given interval c ax,bx to within a tolerance 4*macheps*dabs(x) + tol, where macheps c is the relative machine precision. c this function subprogram is a slightly modified translation of c the algol 60 procedure zero given in richard brent, algorithms for c minimization without derivatives, prentice - hall, inc. (1973). c c c c compute eps, the relative machine precision c eps = 1.0 10 eps = eps/2.0 tol1 = 1.0 + eps if (tol1 .gt. 1.0) go to 10 c c initialization c a = ax b = bx fa = f(a) fb = f(b) c c begin step c 20 c = a fc = fa d = b - a e = d 30 if (dabs(fc) .ge. dabs(fb)) go to 40 a = b b = c c = a fa = fb fb = fc fc = fa c c convergence test c 40 tol1 = 2.0*eps*dabs(b) + 0.5*tol xm = .5*(c - b) if (dabs(xm) .le. tol1) go to 90 if (fb .eq. 0.0) go to 90 c c is bisection necessary c if (dabs(e) .lt. tol1) go to 70 if (dabs(fa) .le. dabs(fb)) go to 70 c c is quadratic interpolation possible c if (a .ne. c) go to 50 c c linear interpolation c s = fb/fa p = 2.0*xm*s q = 1.0 - s go to 60 c c inverse quadratic interpolation c 50 q = fa/fc r = fb/fc s = fb/fa p = s*(2.0*xm*q*(q - r) - (b - a)*(r - 1.0)) q = (q - 1.0)*(r - 1.0)*(s - 1.0) c c adjust signs c 60 if (p .gt. 0.0) q = -q p = dabs(p) c c is interpolation acceptable c if ((2.0*p) .ge. (3.0*xm*q - dabs(tol1*q))) go to 70 if (p .ge. dabs(0.5*e*q)) go to 70 e = d d = p/q go to 80 c c bisection c 70 d = xm e = d c c complete step c 80 a = b fa = fb if (dabs(d) .gt. tol1) b = b + d if (dabs(d) .le. tol1) b = b + dsign(tol1, xm) fb = f(b) if ((fb*(fc/dabs(fc))) .gt. 0.0) go to 20 go to 30 c c done c 90 zeroin = b return end