• VTF
  • FSI
  • AMROC
  • SFC
  • Motion
  • STLIB
  • Main Page
  • src/2d/integrator_extended/step2dsex.f

    c
    c
    c     ==========================================================
          subroutine step2ds(maxm,maxmx,maxmy,mvar,meqn,maux,mwaves,mbc,
         &                   mx,my,qold,aux,dx,dy,dt,method,mthlim,cfl,
         &                   fm,fp,gm,gp,faddm,faddp,gaddm,gaddp,
         &                   q1d,dtdx1d,dtdy1d,aux1,aux2,aux3,
         &                   work,mwork,rpn2,rpt2,ids)
    c     ==========================================================
    c
    c     # Update fluxes in normal direction for a single direction within
    c     # a dimensional splitting method.
    c    
    c     # fadd is used to return flux increments in normal direction from flux2.
    c     # See the flux2 documentation for more information.
    c
          implicit double precision (a-h,o-z)
          include "call.i"
    c
          dimension  qold(mvar, 1-mbc:maxmx+mbc, 1-mbc:maxmy+mbc)
          dimension    fm(mvar, 1-mbc:maxmx+mbc, 1-mbc:maxmy+mbc)
          dimension    fp(mvar, 1-mbc:maxmx+mbc, 1-mbc:maxmy+mbc)
          dimension    gm(mvar, 1-mbc:maxmx+mbc, 1-mbc:maxmy+mbc)
          dimension    gp(mvar, 1-mbc:maxmx+mbc, 1-mbc:maxmy+mbc)
          dimension   q1d(1-mbc:maxm+mbc, meqn)
          dimension faddm(1-mbc:maxm+mbc, meqn)
          dimension faddp(1-mbc:maxm+mbc, meqn)
          dimension gaddm(1-mbc:maxm+mbc, meqn, 2)
          dimension gaddp(1-mbc:maxm+mbc, meqn, 2)
          dimension aux(maux, 1-mbc:maxmx+mbc, 1-mbc:maxmy+mbc)
          dimension aux1(1-mbc:maxm+mbc, maux)
          dimension aux2(1-mbc:maxm+mbc, maux)
          dimension aux3(1-mbc:maxm+mbc, maux)
          dimension dtdx1d(1-mbc:maxm+mbc)
          dimension dtdy1d(1-mbc:maxm+mbc)
          dimension method(7),mthlim(mwaves)
          dimension work(mwork)
          external rpn2,rpt2
    c
    c     # partition work array into pieces needed for local storage in
    c     # flux2 routine.  Find starting index of each piece:
    c
          i0wave = 1
          i0s = i0wave + (maxm+2*mbc)*meqn*mwaves
          i0amdq = i0s + (maxm+2*mbc)*mwaves
          i0apdq = i0amdq + (maxm+2*mbc)*meqn
          i0cqxx = i0apdq + (maxm+2*mbc)*meqn
          i0bmadq = i0cqxx + (maxm+2*mbc)*meqn
          i0bpadq = i0bmadq + (maxm+2*mbc)*meqn
          if (method(1).ge.1) then
             i0qls = i0bpadq + (maxm+2*mbc)*meqn
             i0qrs = i0qls + (maxmx+2*mbc)*(maxmy+2*mbc)*mvar
             i0qbs = i0qrs + (maxmx+2*mbc)*(maxmy+2*mbc)*mvar
             i0qts = i0qbs + (maxmx+2*mbc)*(maxmy+2*mbc)*mvar
             i0ql = i0qts + (maxmx+2*mbc)*(maxmy+2*mbc)*mvar
             i0qr = i0ql + (maxm+2*mbc)*meqn
             i0slope = i0ql
          else
             i0slope = i0bpadq + (maxm+2*mbc)*meqn
          endif
          iused = i0slope + (maxm+2*mbc)*meqn*4 - 1
          mslope = iused-i0slope+1
    c
          if (iused.gt.mwork) then
             write(6,*) '*** not enough work space in step2dsex'
             write(6,*) '*** iused = ', iused, '   mwork =',mwork
             stop 
          endif
    c
    c
          mcapa = method(6)
    c
          cfl = 0.d0
          dtdx = dt/dx
          dtdy = dt/dy
    c
          if (mcapa.eq.0) then
    c        # no capa array:
             do 5 i=1-mbc,maxm+mbc
                dtdx1d(i) = dtdx
                dtdy1d(i) = dtdy
        5    continue
          endif
    c
          if( ids.eq.1 )then
    c
    c        # perform x-sweeps
    c        ==================
    c
    c        # note that for dimensional splitting we sweep over the rows of
    c        # ghosts cells as well as the interior.  This updates the ghost
    c        # cell values to the intermediate state as needed in the following 
    c        # sweep in the y-direction.
    c
             do 50 j = 1-mbc,my+mbc
    c
    c           # copy data along a slice into 1d arrays:
                do 20 i = 1-mbc, mx+mbc
                   do 20 m=1,meqn
                      q1d(i,m) = qold(m,i,j)
     20         continue
    c
                if (mcapa.gt.0)  then
                   do 22 i = 1-mbc, mx+mbc
                      dtdx1d(i) = dtdx / aux(mcapa,i,j)
       22          continue
                endif
    c
                if (maux .gt. 0)  then
                   do 23 ma=1,maux
                      do 23 i = 1-mbc, mx+mbc
                         aux2(i,ma) = aux(ma,i,j)
       23          continue
    c
                   if(j .ne. 1-mbc)then
                      do 24 ma=1,maux
                         do 24 i = 1-mbc, mx+mbc
                            aux1(i,ma) = aux(ma,i,j-1)
       24             continue
                   endif
    c
                   if(j .ne. my+mbc)then
                      do 25 ma=1,maux
                         do 25 i = 1-mbc, mx+mbc
                            aux3(i,ma) = aux(ma,i,j+1)
       25             continue
                   endif
    c
                endif
    c
    c           # Store the value of j along this slice in the common block
    c           # comxyt in case it is needed in the Riemann solver (for
    c           # variable coefficient problems)
                jcom = j  
    c           
    c           # compute modifications fadd and gadd to fluxes along this slice:
                call flux2(1,maxm,meqn,maux,mwaves,mbc,mx,
         &                 q1d,dtdx1d,aux1,aux2,aux3,method,mthlim,
         &                 faddm,faddp,gaddm,gaddp,cfl1d,
         &                 work(i0wave),work(i0s),work(i0amdq),work(i0apdq),
         &                 work(i0cqxx),work(i0bmadq),work(i0bpadq),
         &                 work(i0slope),mslope,rpn2,rpt2)
                cfl = dmax1(cfl,cfl1d)
    c
    c           # update fluxes for use in AMR:
    c
                do 26 i=1,mx+1
                   do 26 m=1,meqn
                      fm(m,i,j) = fm(m,i,j) + faddm(i,m)
                      fp(m,i,j) = fp(m,i,j) + faddp(i,m)
     26         continue
    c
                if (method(1).ge.1.and.method(2).ge.3) 
         &         call saverec2(1,maxm,maxmx,maxmy,mvar,meqn,mbc,mx,my,
         &                       qold,work(i0qls),work(i0qrs),work(i0qbs),
         &                       work(i0qts),work(i0ql),work(i0qr))
    
    c
     50      continue
    c
             if (method(1).ge.1) then
                if (method(2).le.2) then
                   call fmod2(maxm,maxmx,maxmy,mvar,meqn,maux,mbc,mx,my,
         &                    qold,qold,qold,qold,qold,aux,dx,dy,dt,method,
         &                    cfl,fm,fp,gm,gp,q1d,aux2,faddm,faddp,1)
                else
                   call fmod2(maxm,maxmx,maxmy,mvar,meqn,maux,mbc,mx,my,
         &                    qold,work(i0qls),work(i0qrs),work(i0qbs),
         &                    work(i0qts),aux,dx,dy,dt,method,cfl,
         &                    fm,fp,gm,gp,q1d,aux2,faddm,faddp,1)
                endif
             endif
    c
          endif
    c
          if( ids.eq.2 )then
    c
    c        # perform y sweeps
    c        ==================
    c
    c
             do 100 i = 1-mbc, mx+mbc
    c
    c           # copy data along a slice into 1d arrays:
                do 70 j = 1-mbc, my+mbc
                   do 70 m=1,meqn
                      q1d(j,m) = qold(m,i,j)
       70       continue
    c
                if (mcapa.gt.0)  then
                   do 72 j = 1-mbc, my+mbc
                      dtdy1d(j) = dtdy / aux(mcapa,i,j)
       72          continue
                endif
    c
                if (maux .gt. 0)  then
    c
                   do 73 ma=1,maux
                      do 73 j = 1-mbc, my+mbc
                         aux2(j,ma) = aux(ma,i,j)
       73          continue
    c
                   if(i .ne. 1-mbc)then
                      do 74 ma=1,maux
                         do 74 j = 1-mbc, my+mbc
                            aux1(j,ma) = aux(ma,i-1,j)
       74             continue
                   endif
    c
                   if(i .ne. mx+mbc)then
                      do 75 ma=1,maux
                         do 75 j = 1-mbc, my+mbc
                            aux3(j,ma) = aux(ma,i+1,j)
       75             continue
                   endif
    c
                endif            
    c
    c           # Store the value of i along this slice in the common block
    c           # comxyt in case it is needed in the Riemann solver (for
    c           # variable coefficient problems)
                icom = i  
    c           
    c           # compute modifications fadd and gadd to fluxes along this slice:
                call flux2(2,maxm,meqn,maux,mwaves,mbc,my,
         &                 q1d,dtdy1d,aux1,aux2,aux3,method,mthlim,
         &                 faddm,faddp,gaddm,gaddp,cfl1d,
         &                 work(i0wave),work(i0s),work(i0amdq),work(i0apdq),
         &                 work(i0cqxx),work(i0bmadq),work(i0bpadq),
         &                 work(i0slope),mslope,rpn2,rpt2)
                cfl = dmax1(cfl,cfl1d)
    c
    c           # update fluxes for use in AMR:
    c
                do 76 j=1,my+1
                   do 76 m=1,meqn
                      gm(m,i,j) = gm(m,i,j) + faddm(j,m)
                      gp(m,i,j) = gp(m,i,j) + faddp(j,m)
       76       continue
    c     
                if (method(1).ge.1.and.method(2).ge.3) 
         &         call saverec2(2,maxm,maxmx,maxmy,mvar,meqn,mbc,mx,my,
         &                       qold,work(i0qls),work(i0qrs),work(i0qbs),
         &                       work(i0qts),work(i0ql),work(i0qr))
    
    c
     100     continue
    c     
             if (method(1).ge.1) then
                if (method(2).le.2) then
                   call fmod2(maxm,maxmx,maxmy,mvar,meqn,maux,mbc,mx,my,
         &                    qold,qold,qold,qold,qold,aux,dx,dy,dt,method,
         &                    cfl,fm,fp,gm,gp,q1d,aux2,faddm,faddp,2)
                else
                   call fmod2(maxm,maxmx,maxmy,mvar,meqn,maux,mbc,mx,my,
         &                    qold,work(i0qls),work(i0qrs),work(i0qbs),
         &                    work(i0qts),aux,dx,dy,dt,method,cfl,
         &                    fm,fp,gm,gp,q1d,aux2,faddm,faddp,2)
                endif
             endif
    c
          endif
    c
    c
          return
          end
    

<