• VTF
  • FSI
  • AMROC
  • SFC
  • Motion
  • STLIB
  • Main Page
  • src/3d/equations/euler/rp/rpt3eu.f

    c
    c
    c     ==================================================================
          subroutine rpt3eu(ixyz,icoor,maxm,meqn,mwaves,mbc,mx,
         &                  ql,qr,maux,aux1,aux2,aux3,ilr,asdq,
         &                  bmasdq,bpasdq)
    c     ==================================================================
    c
    c     # Riemann solver in the transverse direction for the 
    c     # Euler equations.
    c     #
    c     # On input,
    c
    c     #    ql,qr is the data along some one-dimensional slice, as in rpn3
    c     #         This slice is 
    c     #             in the x-direction if ixyz=1,
    c     #             in the y-direction if ixyz=2, or 
    c     #             in the z-direction if ixyz=3.
    c     #    asdq is an array of flux differences (A^* \Delta q).
    c     #         asdq(i,:) is the flux difference propagating away from
    c     #         the interface between cells i-1 and i.
    c     #    imp = 1 if asdq = A^- \Delta q,  the left-going flux difference
    c     #          2 if asdq = A^+ \Delta q, the right-going flux difference
    c
    c     #    aux2 is the auxiliary array (if method(7)=maux>0) along
    c     #         the plane where this slice lies, say at j=J if ixyz=1.
    c     #         aux2(:,:,1) contains data along j=J, k=k-1
    c     #         aux2(:,:,2) contains data along j=J, k=k
    c     #         aux2(:,:,3) contains data along j=J, k=k+1
    c     #    aux1 is the auxiliary array along the plane with j=J-1
    c     #    aux3 is the auxiliary array along the plane with j=J+1
    c     
    c     #      if ixyz=2 then aux2 is in some plane k=K, and
    c     #         aux2(:,:,1)  contains data along i=I-1, k=K, etc.
    c     
    c     #      if ixyz=3 then aux2 is in some plane i=I, and
    c     #         aux2(:,:,1)  contains data along j=j-1, i=I, etc.
    c
    c     # On output,
    
    c     # If data is in x-direction (ixyz=1) then this routine does the
    c     # splitting of  asdq (= A^* \Delta q, where * = + or -) ...
    c
    c     # into down-going flux difference bmasdq (= B^- A^* \Delta q)
    c     #    and up-going flux difference bpasdq (= B^+ A^* \Delta q)
    c     #    when icoor = 2,
    c
    c     # or
    c
    c     # into down-going flux difference bmasdq (= C^- A^* \Delta q)
    c     #    and up-going flux difference bpasdq (= C^+ A^* \Delta q)
    c     #    when icoor = 3.
    c     #
    c
    c     # More generally, ixyz specifies what direction the slice of data is
    c     # in, and icoor tells which transverse direction to do the splitting in:
    c
    c     # If ixyz = 1,  data is in x-direction and then
    c     #       icoor = 2  =>  split in the y-direction  
    c     #       icoor = 3  =>  split in the z-direction  
    c
    c     # If ixyz = 2,  data is in y-direction and then
    c     #       icoor = 2  =>  split in the z-direction  
    c     #       icoor = 3  =>  split in the x-direction  
    c
    c     # If ixyz = 3,  data is in z-direction and then
    c     #       icoor = 2  =>  split in the x-direction  
    c     #       icoor = 3  =>  split in the y-direction  
    c
    c     #
    c     # Uses Roe averages and other quantities which were 
    c     # computed in rpn3eu and stored in the common block comroe.
    c
    c     Author:  Randall J. LeVeque
    c
          implicit double precision (a-h,o-z)
          dimension     ql(1-mbc:maxm+mbc, meqn)
          dimension     qr(1-mbc:maxm+mbc, meqn)
          dimension   asdq(1-mbc:maxm+mbc, meqn)
          dimension bmasdq(1-mbc:maxm+mbc, meqn)
          dimension bpasdq(1-mbc:maxm+mbc, meqn)
          dimension   aux1(1-mbc:maxm+mbc, maux, 3)
          dimension   aux2(1-mbc:maxm+mbc, maux, 3)
          dimension   aux3(1-mbc:maxm+mbc, maux, 3)
    c
          common /param/  gamma,gamma1
          dimension waveb(5,3),sb(3)
          parameter (maxmrp = 1005) !# assumes atmost max(mx,my,mz) = 1000 with mbc=5
          parameter (minmrp = -4)   !# assumes at most mbc=5
          common /comroe/ u2v2w2(minmrp:maxmrp),
         &     u(minmrp:maxmrp),v(minmrp:maxmrp),w(minmrp:maxmrp),
         &     enth(minmrp:maxmrp),a(minmrp:maxmrp),g1a2(minmrp:maxmrp),
         &     euv(minmrp:maxmrp) 
    c
          if (minmrp.gt.1-mbc .or. maxmrp .lt. maxm+mbc) then
             write(6,*) 'need to increase maxmrp in rp3t'
             stop
          endif
    c
          if(ixyz .eq. 1)then
             mu = 2
             mv = 3
             mw = 4
          else if(ixyz .eq. 2)then
             mu = 3
             mv = 4
             mw = 2
          else
             mu = 4
             mv = 2
             mw = 3
          endif
    c
    c     # Solve Riemann problem in the second coordinate direction
    c
          if( icoor .eq. 2 )then
    
             do 20 i = 2-mbc, mx+mbc
                a4 = g1a2(i) * (euv(i)*asdq(i,1) 
         &             + u(i)*asdq(i,mu) + v(i)*asdq(i,mv) 
         &             + w(i)*asdq(i,mw) - asdq(i,5))
                a2 = asdq(i,mu) - u(i)*asdq(i,1)
                a3 = asdq(i,mw) - w(i)*asdq(i,1)
                a5 = (asdq(i,mv) + (a(i)-v(i))*asdq(i,1) - a(i)*a4)
         &              / (2.d0*a(i))
                a1 = asdq(i,1) - a4 - a5
    c
                waveb(1,1)  = a1
                waveb(mu,1) = a1*u(i)
                waveb(mv,1) = a1*(v(i)-a(i))
                waveb(mw,1) = a1*w(i)
                waveb(5,1)  = a1*(enth(i) - v(i)*a(i))
                sb(1) = v(i) - a(i)
    c
                waveb(1,2)  = a4
                waveb(mu,2) = a2 + u(i)*a4
                waveb(mv,2) = v(i)*a4
                waveb(mw,2) = a3 + w(i)*a4 
                waveb(5,2)  = a4*0.5d0*u2v2w2(i) + a2*u(i) + a3*w(i)
                sb(2) = v(i)
    c
                waveb(1,3)  = a5
                waveb(mu,3) = a5*u(i)
                waveb(mv,3) = a5*(v(i)+a(i))
                waveb(mw,3) = a5*w(i)
                waveb(5,3)  = a5*(enth(i)+v(i)*a(i))
                sb(3) = v(i) + a(i)
    c
                do 25 m=1,meqn
                   bmasdq(i,m) = 0.d0
                   bpasdq(i,m) = 0.d0
                   do 25 mws=1,mwaves
                      bmasdq(i,m) = bmasdq(i,m) 
         &                        + dmin1(sb(mws), 0.d0) * waveb(m,mws)
                      bpasdq(i,m) = bpasdq(i,m)
         &                        + dmax1(sb(mws), 0.d0) * waveb(m,mws)
     25         continue
    c                 
       20    continue
    c
          else
    c
    c        # Solve Riemann problem in the third coordinate direction
    c
             do 30 i = 2-mbc, mx+mbc
                a4 = g1a2(i) * (euv(i)*asdq(i,1) 
         &             + u(i)*asdq(i,mu) + v(i)*asdq(i,mv) 
         &             + w(i)*asdq(i,mw) - asdq(i,5))
                a2 = asdq(i,mu) - u(i)*asdq(i,1)
                a3 = asdq(i,mv) - v(i)*asdq(i,1)
                a5 = (asdq(i,mw) + (a(i)-w(i))*asdq(i,1) - a(i)*a4)
         &              / (2.d0*a(i))
                a1 = asdq(i,1) - a4 - a5
    c
                waveb(1,1)  = a1
                waveb(mu,1) = a1*u(i)
                waveb(mv,1) = a1*v(i)
                waveb(mw,1) = a1*(w(i) - a(i))
                waveb(5,1)  = a1*(enth(i) - w(i)*a(i))
                sb(1) = w(i) - a(i)
    c
                waveb(1,2)  = a4
                waveb(mu,2) = a2 + u(i)*a4
                waveb(mv,2) = a3 + v(i)*a4
                waveb(mw,2) = w(i)*a4 
                waveb(5,2)  = a4*0.5d0*u2v2w2(i) + a2*u(i) + a3*v(i)
                sb(2) = w(i)
    c
                waveb(1,3)  = a5
                waveb(mu,3) = a5*u(i)
                waveb(mv,3) = a5*v(i)
                waveb(mw,3) = a5*(w(i)+a(i))
                waveb(5,3)  = a5*(enth(i)+w(i)*a(i))
                sb(3) = w(i) + a(i)
    c
                do 35 m=1,meqn
                   bmasdq(i,m) = 0.d0
                   bpasdq(i,m) = 0.d0
                   do 35 mws=1,mwaves
                      bmasdq(i,m) = bmasdq(i,m) 
         &                        + dmin1(sb(mws), 0.d0) * waveb(m,mws)
                      bpasdq(i,m) = bpasdq(i,m)
         &                        + dmax1(sb(mws), 0.d0) * waveb(m,mws)
     35         continue
    c
     30      continue
    c
          endif
    c
          return
          end
    

<