• VTF
  • FSI
  • AMROC
  • SFC
  • Motion
  • STLIB
  • Main Page
  • src/2d/equations/euler/rprhok/rpt2eurhok.f

    c
    c
    c     =====================================================
          subroutine rpt2eurhok(ixy,maxm,meqn,mwaves,mbc,mx,
         &                      ql,qr,maux,aux1,aux2,aux3,
         &                      ilr,asdq,bmasdq,bpasdq)
    c     =====================================================
          implicit double precision (a-h,o-z)
    c
    c     # Riemann solver in the transverse direction for the Euler equations.
    c     # Split asdq (= A^* \Delta q, where * = + or -)
    c     # into down-going flux difference bmasdq (= B^- A^* \Delta q)
    c     #    and up-going flux difference bpasdq (= B^+ A^* \Delta q)
    c
    c     # Uses Roe averages and other quantities which were 
    c     # computed in rpn2eu and stored in the common block comroe.
    c
    c     # Copyright (C) 2002 Ralf Deiterding
    c     # Brandenburgische Universitaet Cottbus
    c
          include "ck.i"
    c
          dimension     ql(1-mbc:maxm+mbc, meqn)
          dimension     qr(1-mbc:maxm+mbc, meqn)
          dimension   asdq(1-mbc:maxm+mbc, meqn)
          dimension bmasdq(1-mbc:maxm+mbc, meqn)
          dimension bpasdq(1-mbc:maxm+mbc, meqn)
    c
          parameter (maxm2 = 10005)  !# assumes at most 10000x10000 grid with mbc=5
          parameter (minm2 = -4)     !# assumes at most mbc=5
          common /comroe/ u(minm2:maxm2), v(minm2:maxm2), u2v2(minm2:maxm2), 
         &     enth(minm2:maxm2), a(minm2:maxm2), g1a2(minm2:maxm2), 
         &     dpY(minm2:maxm2), Y(LeNsp,minm2:maxm2), pk(LeNsp,minm2:maxm2) 
          dimension waveb(LeNsp+4,3),sb(3)
    c
          if (minm2.gt.1-mbc .or. maxm2 .lt. maxm+mbc) then
             write(6,*) 'need to increase maxm2 in rpB'
             stop
          endif
    c
          if (ixy.eq.1) then
             mu = Nsp+1
             mv = Nsp+2
          else
             mu = Nsp+2
             mv = Nsp+1
          endif
          mE = Nsp+3
          mT = Nsp+4
    c
    c     # compute the flux differences bmasdq and bpasdq
    c
          do 20 i=2-mbc,mx+mbc
    
             dpdr = 0.d0
             drho = 0.d0
             do k = 1, Nsp
                drho = drho + asdq(i,k)
                dpdr = dpdr + pk(k,i) * asdq(i,k)
             enddo
    c
             a2 = g1a2(i)*(dpdr - ( u(i)*asdq(i,mu) + v(i)*asdq(i,mv) )  
         &        + asdq(i,mE) )
             a3 = asdq(i,mu) - u(i)*drho 
             a4 = 0.5d0*( a2 - ( v(i)*drho - asdq(i,mv) )/a(i) )
             a1 = a2 - a4 
    c
    c        # Compute the waves.
    c        # Note that the 1+k-waves, for 1 .le. k .le. Nsp travel at
    c        # the same speed and are lumped together in wave(.,.,2).
    c        # The 3-wave is then stored in wave(.,.,3).
    c
             do k = 1, Nsp
    c           # 1-wave
                waveb(k,1) = a1*Y(k,i)
    c           # 2-wave
                waveb(k,2) = asdq(i,k) - Y(k,i)*a2
    c           # 3-wave
                waveb(k,3) = a4*Y(k,i)
             enddo
     
    c        # 1-wave
             waveb(mu,1) = a1*u(i)
             waveb(mv,1) = a1*(v(i) - a(i))
             waveb(mE,1) = a1*(enth(i) - v(i)*a(i))
             waveb(mT,1) = 0.d0
             sb(1) = v(i)-a(i)
    c
    c        # 2-wave
             waveb(mu,2) = (drho - a2)*u(i) + a3
             waveb(mv,2) = (drho - a2)*v(i)
             waveb(mE,2) = (drho - a2)*u2v2(i)
         &        - dpdr + dpY(i)*a2        + a3*u(i)
             waveb(mT,2) = 0.d0
             sb(2) = v(i)
    c
    c        # 3-wave
             waveb(mu,3) = a4*u(i)
             waveb(mv,3) = a4*(v(i) + a(i))
             waveb(mE,3) = a4*(enth(i) + v(i)*a(i))
             waveb(mT,3) = 0.d0
             sb(3) = v(i)+a(i)
    c     
             do 10 m=1,meqn
                bmasdq(i,m) = 0.d0
                bpasdq(i,m) = 0.d0
                do 10 mw=1,mwaves
                   bmasdq(i,m) = bmasdq(i,m) 
         &              + dmin1(sb(mw), 0.d0) * waveb(m,mw)
                   bpasdq(i,m) = bpasdq(i,m)
         &              + dmax1(sb(mw), 0.d0) * waveb(m,mw)
     10      continue
    c     
     20   continue
    c
          return
          end
    

<