• VTF
  • FSI
  • AMROC
  • SFC
  • Motion
  • STLIB
  • Main Page
  • src/3d/equations/euler/rpm/rpn3meuqs.f

    c
    c
    c
    c     ==================================================================
          subroutine rpn3meuqs(ixyz,maxm,meqn,mwaves,mbc,mx,qlo,qro,
         &     maux,auxl,auxr,wave,s,amdq,apdq)
    c     ==================================================================
    c
    c     # Two-component Roe-solver for the Euler equations with quasi-stationary
    c     # source term balancing.
    c
    c     # solve Riemann problems along one slice of data.
    c     # This data is along a slice in the x-direction if ixyz=1
    c     #                               the y-direction if ixyz=2.
    c     #                               the z-direction if ixyz=3.
    c
    c     # On input, ql contains the state vector at the left edge of each cell
    c     #           qr contains the state vector at the right edge of each cell
    c
    c     # auxl(i,ma,2) contains auxiliary data for cells along this slice,
    c     #    where ma=1,maux in the case where maux=method(7) > 0.
    c     # auxl(i,ma,1) and auxl(i,ma,3) contain auxiliary data along
    c     # neighboring slices that generally aren't needed in the rpn3 routine.
    c
    c
    c     # On output, wave contains the waves, s the speeds, 
    c     # and amdq, apdq the decomposition of the flux difference
    c     #   f(qr(i-1)) - f(ql(i))  
    c     # into leftgoing and rightgoing parts respectively.
    c     # With the Roe solver we have   
    c     #    amdq  =  A^- \Delta q    and    apdq  =  A^+ \Delta q
    c     # where A is the Roe matrix.  An entropy fix can also be incorporated
    c     # into the flux differences.
    c
    c     # Note that the i'th Riemann problem has left state qr(i-1,:)
    c     #                                    and right state ql(i,:)
    c     # From the basic clawpack routines, this routine is called with ql = qr
    c
    c     # Copyright (C) 2002 Ralf Deiterding
    c     # Brandenburgische Universitaet Cottbus
    c
          implicit double precision(a-h,o-z)
    c
          dimension wave(1-mbc:maxm+mbc, meqn, mwaves)
          dimension    s(1-mbc:maxm+mbc, mwaves)
          dimension   qlo(1-mbc:maxm+mbc, meqn)
          dimension   qro(1-mbc:maxm+mbc, meqn)
          dimension amdq(1-mbc:maxm+mbc, meqn)
          dimension apdq(1-mbc:maxm+mbc, meqn)
          dimension auxl(1-mbc:maxm+mbc, maux, 3)
          dimension auxr(1-mbc:maxm+mbc, maux, 3)
    c
    c     local arrays -- common block comroe is passed to rpt3eu
    c                     
    c     ------------
          parameter (maxmrp = 1002) !# assumes atmost max(mx,my,mz) = 1000 with mbc=2
          dimension delta(7), delh(7)
          logical efix
          common /comroe/ u2v2w2(-1:maxmrp),
         &       u(-1:maxmrp),v(-1:maxmrp),w(-1:maxmrp),enth(-1:maxmrp),
         &       a(-1:maxmrp),g1a2(-1:maxmrp),euv(-1:maxmrp),p(-1:maxmrp) 
          dimension ql(-1:maxmrp, 7), qr(-1:maxmrp, 7)
    c
          data efix /.true./    !# use entropy fix for transonic rarefactions
    c
          if (-1.gt.1-mbc .or. maxmrp .lt. maxm+mbc) then
    	 write(6,*) 'need to increase maxmrp in rpA'
    	 stop
    	 endif
    c
    c     # set mu to point to  the component of the system that corresponds
    c     # to momentum in the direction of this slice, mv and mw to the 
    c     # orthogonal momentums:
    c
          if(ixyz .eq. 1)then
    	  mu = 2
    	  mv = 3
              mw = 4
              ma = 1
          else if(ixyz .eq. 2)then
    	  mu = 3
    	  mv = 4
              mw = 2
              ma = 2
          else
              mu = 4
              mv = 2
              mw = 3
              ma = 3
          endif
    c
    c
    c     # note that notation for u,v, and w reflects assumption that the 
    c     # Riemann problems are in the x-direction with u in the normal
    c     # direction and v and w in the orthogonal directions, but with the 
    c     # above definitions of mu, mv, and mw the routine also works with 
    c     # ixyz=2 and ixyz = 3
    c     # and returns, for example, f0 as the Godunov flux g0 for the
    c     # Riemann problems u_t + g(u)_y = 0 in the y-direction.
    c
    c     # Compute delh for left states
          do 11 i=2-mbc,mx+mbc
             gamma1 = 1.d0/qlo(i,6)
             gamma = gamma1 + 1.d0
             pinf = qlo(i,7) * gamma1/gamma
             G  = (gamma**2-gamma+2.)/gamma1    
             r  = qlo(i,1)
    	 ru = qlo(i,mu)
    	 rv = qlo(i,mv)
    	 rw = qlo(i,mw)
             e  = qlo(i,5)
    	 delh(1) = auxl(i,ma,2)/(gamma1*(2.*(e-pinf)*
         &        gamma/r-ru**2*G/r**2))
             delh(5) = auxl(i,ma,2)*r/(2.*e*gamma1)*(1.+ru**2*(3.-gamma)/
         &        (gamma1*(2.*(e-pinf)*gamma*r-G*ru**2)))         
    
             ql(i,1)  = r*(1.-delh(1))
             ql(i,mu) = ru
             ql(i,mv) = rv
             ql(i,mw) = rw
             ql(i,5)  = e*(1.-delh(5))
             ql(i,6)  = qlo(i,6)
             ql(i,7)  = qlo(i,7)
     11   continue
    
    c     # Compute delh for right states
          do 12 i=1-mbc,mx+mbc-1
             gamma1 = 1.d0/qro(i,6)
             gamma = gamma1 + 1.d0
             pinf = qro(i,7) * gamma1/gamma
             G  = (gamma**2-gamma+2.)/gamma1    
             r  = qro(i,1)
    	 ru = qro(i,mu)
    	 rv = qro(i,mv)
    	 rw = qro(i,mw)
             e  = qro(i,5)
             G  = (gamma**2-gamma+2.)/gamma1    
    	 delh(1) = auxr(i,ma,2)/(gamma1*(2.*(e-pinf)*
         *        gamma/r-ru**2*G/r**2))
             delh(5) = auxr(i,ma,2)*r/(2.*e*gamma1)*(1.+ru**2*(3.-gamma)/
         &        (gamma1*(2.*(e-pinf)*gamma*r-G*ru**2)))  
           
             qr(i,1)  = r*(1.+delh(1))
             qr(i,mu) = ru
             qr(i,mv) = rv
             qr(i,mw) = rw
             qr(i,5)  = e*(1.+delh(5))         
             qr(i,6)  = qro(i,6)
             qr(i,7)  = qro(i,7)
     12   continue
    
    c      do 13 i=2-mbc,mx+mbc-1
    c         pr = (qr(i,5) - 0.5d0*(qr(i,2)**2 + qr(i,3)**2 +
    c     &        qr(i,4)**2)/qr(i,1) - qr(i,7) ) / qr(i,6)
    c         pl = (ql(i,5) - 0.5d0*(ql(i,2)**2 + ql(i,3)**2 +
    c     &        ql(i,4)**2)/ql(i,1) - ql(i,7) ) / ql(i,6)
    c         cm = qr(i,mu)**2/qr(i,1)+pr-ql(i,mu)**2/ql(i,1)-pl
    c         ce = (qr(i,5)+pr)*qr(i,mu)/qr(i,1)-
    c     &        (ql(i,5)+pl)*ql(i,mu)/ql(i,1)
    c 	 write(6,*) 'cm ',cm,qlo(i,1)*auxl(i,ma,2),cm-qlo(i,1)*auxl(i,ma,2)
    c 	 write(6,*) 'ce ',ce,qlo(i,mu)*auxl(i,ma,2),ce-qlo(i,mu)*auxl(i,ma,2)
    c     
    c 	 write(6,*) 'new ',ql(i,1),qlo(i,1),qr(i,1),ql(i,5),qlo(i,5),qr(i,5)
    c 13   continue
    
    c
    c     # Compute the Roe-averaged variables needed in the Roe solver.
    c     # These are stored in the common block comroe since they are
    c     # later used in routine rpt3eu to do the transverse wave 
    c     # splitting.
    c
          do 10 i = 2-mbc, mx+mbc
    	 rhsqrtl = dsqrt(qr(i-1,1))
    	 rhsqrtr = dsqrt(ql(i,1))
             pl = (qr(i-1,5) - 0.5d0*(qr(i-1,mu)**2 + qr(i-1,mv)**2 +
         &        qr(i-1,mw)**2)/qr(i-1,1) - qr(i-1,7) ) / qr(i-1,6)
             pr = (ql(i,5) - 0.5d0*(ql(i,mu)**2 + ql(i,mv)**2 +
         &        ql(i,mw)**2)/ql(i,1) - ql(i,7) ) / ql(i,6)
    	 rhsq2 = rhsqrtl + rhsqrtr
    
             gamma1 = rhsq2 / ( qr(i-1,6)*rhsqrtl + ql(i,6)*rhsqrtr ) 
             xjota = ( pl*qr(i-1,6)*rhsqrtl + pr*ql(i,6)*rhsqrtr ) / rhsq2
             p(i) = xjota*gamma1
    
    	 u(i) = (qr(i-1,mu)/rhsqrtl + ql(i,mu)/rhsqrtr) / rhsq2
    	 v(i) = (qr(i-1,mv)/rhsqrtl + ql(i,mv)/rhsqrtr) / rhsq2
    	 w(i) = (qr(i-1,mw)/rhsqrtl + ql(i,mw)/rhsqrtr) / rhsq2
    	 enth(i) = (((qr(i-1,5)+pl)/rhsqrtl 
         &		   + (ql(i,5)+pr)/rhsqrtr)) / rhsq2
    	 u2v2w2(i) = u(i)**2 + v(i)**2 + w(i)**2
             a2 = gamma1*(enth(i) - .5d0*u2v2w2(i))
             a(i) = dsqrt(a2)
    	 g1a2(i) = gamma1 / a2
    	 euv(i) = enth(i) - u2v2w2(i) 
       10 continue
    c
    c
    c     # now split the jump in q1d at each interface into waves
    c
    c     # find a1 thru a5, the coefficients of the 5 eigenvectors:
          do 20 i = 2-mbc, mx+mbc
             delta(1) = ql(i,1) - qr(i-1,1)
             delta(2) = ql(i,mu) - qr(i-1,mu)
             delta(3) = ql(i,mv) - qr(i-1,mv)
             delta(4) = ql(i,mw) - qr(i-1,mw)
             delta(5) = ql(i,5) - qr(i-1,5)
             delta(6) = ql(i,6) - qr(i-1,6)
             delta(7) = ql(i,7) - qr(i-1,7)
             a4 = g1a2(i) * (euv(i)*delta(1) 
         &      + u(i)*delta(2) + v(i)*delta(3) + w(i)*delta(4) 
         &      - delta(5) + p(i)*delta(6) + delta(7))
             a2 = delta(3) - v(i)*delta(1)
             a3 = delta(4) - w(i)*delta(1)
             a5 = (delta(2) + (a(i)-u(i))*delta(1) - a(i)*a4) / (2.d0*a(i))
             a1 = delta(1) - a4 - a5
             a6 = delta(6)
             a7 = delta(7)
    c
    c        # Compute the waves.
    c        # Note that the 2,3,6,7-wave travel at the same speed 
    c        # and are lumped together in wave(.,.,2).  The 5-wave is then stored 
    c        # in wave(.,.,3).
    c
             wave(i,1,1)  = a1
             wave(i,mu,1) = a1*(u(i)-a(i))
             wave(i,mv,1) = a1*v(i)
             wave(i,mw,1) = a1*w(i)
             wave(i,5,1)  = a1*(enth(i) - u(i)*a(i))
             wave(i,6,1)  = 0.d0
             wave(i,7,1)  = 0.d0 
             s(i,1) = u(i)-a(i)
    c
             wave(i,1,2)  = a4
             wave(i,mu,2) = a4*u(i)
             wave(i,mv,2) = a4*v(i)	 	 + a2
             wave(i,mw,2) = a4*w(i)	 	 + a3
             wave(i,5,2)  = a4*0.5d0*u2v2w2(i)+a2*v(i)+a3*w(i)+a6*p(i)+a7
             wave(i,6,2)  =                                    a6
             wave(i,7,2)  =                                            a7        
             s(i,2) = u(i)
    c
             wave(i,1,3)  = a5
             wave(i,mu,3) = a5*(u(i)+a(i))
             wave(i,mv,3) = a5*v(i)
             wave(i,mw,3) = a5*w(i)
             wave(i,5,3)  = a5*(enth(i)+u(i)*a(i))
             wave(i,6,3)  = 0.d0
             wave(i,7,3)  = 0.d0 
             s(i,3) = u(i)+a(i)
       20    continue
    c
    c
    c    # compute flux differences amdq and apdq.
    c    ---------------------------------------
    c
          if (efix) go to 110
    c
    c     # no entropy fix
    c     ----------------
    c
    c     # amdq = SUM s*wave   over left-going waves
    c     # apdq = SUM s*wave   over right-going waves
    c
          do 100 m=1,meqn
             do 100 i=2-mbc, mx+mbc
    	    amdq(i,m) = 0.d0
    	    apdq(i,m) = 0.d0
    	    do 90 mws=1,mwaves
    	       if (s(i,mws) .lt. 0.d0) then
    		   amdq(i,m) = amdq(i,m) + s(i,mws)*wave(i,m,mws)
    		 else
    		   apdq(i,m) = apdq(i,m) + s(i,mws)*wave(i,m,mws)
    		 endif
       90          continue
      100       continue
          go to 900	    
    c
    c-----------------------------------------------------
    c
      110 continue
    c
    c     # With entropy fix
    c     ------------------
    c
    c    # compute flux differences amdq and apdq.
    c    # First compute amdq as sum of s*wave for left going waves.
    c    # Incorporate entropy fix by adding a modified fraction of wave
    c    # if s should change sign.
    c
          do 200 i = 2-mbc, mx+mbc
    c
    c        # check 1-wave:
    c        ---------------
    c
    	 rhoim1 = qr(i-1,1)
             pim1 = (qr(i-1,5) - 0.5d0*(qr(i-1,mu)**2 + qr(i-1,mv)**2 +
         &        qr(i-1,mw)**2)/qr(i-1,1) - qr(i-1,7) ) / qr(i-1,6)
             gamma1 = 1.d0/qr(i-1,6)
             gamma = gamma1 + 1.d0
             pinf = qr(i-1,7)*gamma1/gamma
             cim1 = dsqrt(gamma*(pim1+pinf)/rhoim1)
    	 s0 = qr(i-1,mu)/rhoim1 - cim1     !# u-c in left state (cell i-1)
    c
    c
    c        # check for fully supersonic case:
    	 if (s0.ge.0.d0 .and. s(i,1).gt.0.d0)then 
    c            # everything is right-going
    	     do 60 m=1,meqn
    		amdq(i,m) = 0.d0
       60           continue
    	     go to 200 
    	     endif
    c
             rho1 = qr(i-1,1) + wave(i,1,1)
             rhou1 = qr(i-1,mu) + wave(i,mu,1)
             rhov1 = qr(i-1,mv) + wave(i,mv,1)
             rhow1 = qr(i-1,mw) + wave(i,mw,1)
             en1 = qr(i-1,5) + wave(i,5,1)
             p1 = (en1 - 0.5d0*(rhou1**2 + rhov1**2 + rhow1**2)/rho1 
         &        - qr(i-1,7) ) / qr(i-1,6)
             c1 = dsqrt(gamma*(p1+pinf)/rho1)
             s1 = rhou1/rho1 - c1  !# u-c to right of 1-wave
             if (s0.lt.0.d0 .and. s1.gt.0.d0) then
    c            # transonic rarefaction in the 1-wave
    	     sfract = s0 * (s1-s(i,1)) / (s1-s0)
    	   else if (s(i,1) .lt. 0.d0) then
    c	     # 1-wave is leftgoing
    	     sfract = s(i,1)
    	   else
    c	     # 1-wave is rightgoing
                 sfract = 0.d0   !# this shouldn't happen since s0 < 0
    	   endif
    	 do 120 m=1,meqn
    	    amdq(i,m) = sfract*wave(i,m,1)
      120       continue
    c
    c        # check 2-wave:
    c        ---------------
    c
             if (s(i,2) .ge. 0.d0) go to 200  !# 2-,3- and 4- waves are rightgoing
    	 do 140 m=1,meqn
    	    amdq(i,m) = amdq(i,m) + s(i,2)*wave(i,m,2)
      140       continue
    c
    c        # check 3-wave:
    c        ---------------
    c
    	 rhoi = ql(i,1)
             pi = (ql(i,5) - 0.5d0*(ql(i,mu)**2 + ql(i,mv)**2 +
         &        ql(i,mw)**2)/ql(i,1) - ql(i,7) ) / ql(i,6)
             gamma1 = 1.d0/ql(i,6)
             gamma = gamma1 + 1.d0
             pinf = ql(i,7)*gamma1/gamma
             ci = dsqrt(gamma*(pi+pinf)/rhoi)
    	 s3 = ql(i,mu)/rhoi + ci     !# u+c in right state  (cell i)
    c
             rho2 = ql(i,1) - wave(i,1,3)
             rhou2 = ql(i,mu) - wave(i,mu,3)
             rhov2 = ql(i,mv) - wave(i,mv,3)
             rhow2 = ql(i,mw) - wave(i,mw,3)
             en2 = ql(i,5) - wave(i,5,3)
             p2 = (en2 - 0.5d0*(rhou2**2+rhov2**2+rhow2**2)/rho2 
         &        - ql(i,7)) / ql(i,6)
             c2 = dsqrt(gamma*(p2+pinf)/rho2)
             s2 = rhou2/rho2 + c2   !# u+c to left of 3-wave
             if (s2 .lt. 0.d0 .and. s3.gt.0.d0 ) then
    c            # transonic rarefaction in the 3-wave
    	     sfract = s2 * (s3-s(i,3)) / (s3-s2)
    	   else if (s(i,3) .lt. 0.d0) then
    c            # 3-wave is leftgoing
    	     sfract = s(i,3)
    	   else 
    c            # 3-wave is rightgoing
    	     go to 200
    	   endif
    c
    	 do 160 m=1,5
    	    amdq(i,m) = amdq(i,m) + sfract*wave(i,m,3)
      160       continue
      200    continue
    c
    c     # compute the rightgoing flux differences:
    c     # df = SUM s*wave   is the total flux difference and apdq = df - amdq
    c
          do 220 m=1,meqn
    	 do 220 i = 2-mbc, mx+mbc
    	    df = 0.d0
    	    do 210 mws=1,mwaves
    	       df = df + s(i,mws)*wave(i,m,mws)
      210          continue
    	    apdq(i,m) = df - amdq(i,m)
      220       continue
    c
      900 continue       
          return
          end
    

<