• VTF
  • FSI
  • AMROC
  • SFC
  • Motion
  • STLIB
  • Main Page
  • src/3d/equations/euler/rpznd/rpn3euzndvlg.f

    c
    c
    c     =====================================================
          subroutine rpn3euznd(ixyz,maxm,meqn,mwaves,mbc,mx,ql,qr,
         &                     maux,auxl,auxr,wave,s,fl,fr)
    c     =====================================================
    c
    c     # solve Riemann problems for the 3D ZND-Euler equations using 
    c     # van Leer's Flux Vector Splitting following Shuen's approach for
    c     # multicomponent gas mixtures
    c
    c     # On input, ql contains the state vector at the left edge of each cell
    c     #           qr contains the state vector at the right edge of each cell
    c     # This data is along a slice in the x-direction if ixyz=1
    c     #                               the y-direction if ixyz=2.
    c     #                               the z-direction if ixyz=3.
    c
    c     # On output, wave contains the waves, s the speeds, 
    c     # fl and fr the positive and negative flux.
    c
    c     # Note that the i'th Riemann problem has left state qr(i-1,:)
    c     #                                    and right state ql(i,:)
    c     # From the basic clawpack routines, this routine is called with ql = qr
    c
    c     # Copyright (C) 2002 Ralf Deiterding
    c     # Brandenburgische Universitaet Cottbus
    c
          implicit double precision (a-h,o-z)
    c
          dimension wave(1-mbc:maxm+mbc, meqn, mwaves)
          dimension    s(1-mbc:maxm+mbc, mwaves)
          dimension   ql(1-mbc:maxm+mbc, meqn)
          dimension   qr(1-mbc:maxm+mbc, meqn)
          dimension   fl(1-mbc:maxm+mbc, meqn)
          dimension   fr(1-mbc:maxm+mbc, meqn)
          dimension auxl(1-mbc:maxm+mbc, maux, 3)
          dimension auxr(1-mbc:maxm+mbc, maux, 3)
          double precision Ml, Mr
          dimension fvl(6), fvr(6), sl(3), sr(3)
          common /param/  gamma,gamma1,q0
    c
    c     # Method returns fluxes
    c     ------------
          common /rpnflx/ mrpnflx
          mrpnflx = 1
    c
    c     # set mu to point to  the component of the system that corresponds
    c     # to momentum in the direction of this slice, mv and mw to the 
    c     # orthogonal momentums:
    c
          if(ixyz .eq. 1)then
             mu = 3
             mv = 4
             mw = 5
          else if(ixyz .eq. 2)then
             mu = 4
             mv = 5
             mw = 3
          else
             mu = 5
             mv = 3
             mw = 4
          endif
    c
    c     # Van Leer's Flux Vector Splitting
    c
          gamma2 = gamma**2-1
          do 10 i=2-mbc,mx+mbc
             rhol = qr(i-1,1)+qr(i-1,2)
             rhor = ql(i  ,1)+ql(i  ,2)
             Y1l = qr(i-1,1)/rhol
             Y2l = qr(i-1,2)/rhol
             Y1r = ql(i  ,1)/rhor
             Y2r = ql(i  ,2)/rhor
             ul = qr(i-1,mu)/rhol
             ur = ql(i  ,mu)/rhor
             vl = qr(i-1,mv)/rhol
             vr = ql(i  ,mv)/rhor
             wl = qr(i-1,mw)/rhol
             wr = ql(i  ,mw)/rhor
             El = qr(i-1,6)/rhol
             Er = ql(i  ,6)/rhor
             pl = gamma1*(qr(i-1,6) - qr(i-1,2)*q0 - 
         &        0.5d0*(qr(i-1,mu)**2+qr(i-1,mv)**2+qr(i-1,mw)**2)/rhol)
             pr = gamma1*(ql(i  ,6) - ql(i  ,2)*q0 - 
         &        0.5d0*(ql(i  ,mu)**2+ql(i  ,mv)**2+ql(i  ,mw)**2)/rhor)
             Hl = El+pl/rhol
             Hr = Er+pr/rhor
    c
             al2 = gamma*pl/rhol
             al  = dsqrt(al2)
             ar2 = gamma*pr/rhor
             ar  = dsqrt(ar2)
    c
             Ml = ul/al
             Mr = ur/ar
    c
             sl(1) = ul-al
             sl(2) = ul
             sl(3) = ul+al
             sr(1) = ur-ar
             sr(2) = ur
             sr(3) = ur+ar
    c
             if (Ml.ge.1.d0) then
                facl    = rhol*ul
                fvl(1)  = facl*Y1l
                fvl(2)  = facl*Y2l
                fvl(mu) = facl*ul+pl
                fvl(mv) = facl*vl
                fvl(mw) = facl*wl
                fvl(6)  = facl*El+ul*pl
             else if (Ml.le.-1.d0) then
                do m = 1,meqn
                   fvl(m) = 0.d0
                enddo
             else
                fhl = gamma*(El - Y2l*q0 - 0.5d0*(ul**2+vl**2+wl**2))/al2
                xl = fhl/(1.d0+2.d0*fhl)
                facl    = 0.25d0*rhol*al*(Ml+1.d0)**2
                fvl(1)  = facl*Y1l
                fvl(2)  = facl*Y2l
                fvl(mu) = facl*2.d0*al/gamma*(0.5d0*gamma1*Ml+1.d0)
                fvl(mv) = facl*vl
                fvl(mw) = facl*wl
                fvl(6)  = facl*(Hl-xl*(ul-al)**2)
             endif
    c
             if (Mr.le.-1.d0) then
                facr    = rhor*ur
                fvr(1)  = facr*Y1r
                fvr(2)  = facr*Y2r
                fvr(mu) = facr*ur+pr
                fvr(mv) = facr*vr
                fvr(mw) = facr*wr
                fvr(6)  = facr*Er+ur*pr
             else if (Mr.ge.1.d0) then
                do m = 1,meqn
                   fvr(m) = 0.d0
                enddo
             else
                fhr = gamma*(Er - Y2r*q0 - 0.5d0*(ur**2+vr**2+wr**2))/ar2
                xr = fhr/(1.d0+2.d0*fhr)
                facr    = -0.25d0*rhor*ar*(Mr-1.d0)**2
                fvr(1)  = facr*Y1r
                fvr(2)  = facr*Y2r
                fvr(mu) = facr*2.d0*ar/gamma*(0.5d0*gamma1*Mr-1.d0)
                fvr(mv) = facr*vr
                fvr(mw) = facr*wr
                fvr(6)  = facr*(Hr-xr*(ur+ar)**2)
             endif
    c
             do 20 m = 1,meqn
                fl(i,m) = fvl(m) + fvr(m)
                fr(i,m) = -fl(i,m)
     20      continue
    c
             if (dabs(Ml).lt.1.d0) then
                facl = (gamma+3.d0)/(2.d0*gamma+dabs(Ml)*(3.d0-gamma))
             else
                facl = 1.d0
             endif
             if (dabs(Mr).lt.1.d0) then
                facr = (gamma+3.d0)/(2.d0*gamma+dabs(Mr)*(3.d0-gamma))
             else
                facr = 1.d0
             endif
    c
             do 10 mws=1,mwaves
                s(i,mws) = dmax1(dabs(facl*sl(mws)),dabs(facr*sr(mws)))
                do 10 m=1,meqn
                   wave(i,m,mws) = 0.d0
     10   continue
    c
          return
          end
    c
    

<