• VTF
  • FSI
  • AMROC
  • SFC
  • Motion
  • STLIB
  • Main Page
  • src/3d/equations/euler/rpznd/rpn3euzndexact.f

    c
    c =========================================================
          subroutine rpn3euznd(ixyz,maxm,meqn,mwaves,mbc,mx,ql,qr,maux,
         &     auxl,auxr,wave,s,dfl,dfr)
    c =========================================================
    c
    c     # Riemann solver for the 3D ZND-Euler equations.
    c     # The waves are computed using the Roe approximation.
    c
    c     # On input, ql contains the state vector at the left edge of each cell
    c     #           qr contains the state vector at the right edge of each cell
    c     # This data is along a slice in the x-direction if ixyz=1
    c     #                               the y-direction if ixyz=2.
    c     #                               the z-direction if ixyz=3.
    c
    c     # On output, wave contains the waves, 
    c     #            s the speeds, 
    c     #            dfl the  left-going flux difference  A^- \Delta q
    c     #            dfr the right-going flux difference  A^+ \Delta q
    c
    c     # Note that the i'th Riemann problem has left state qr(i-1,:)
    c     #                                    and right state ql(i,:)
    c     # From the basic routines, this routine is called with ql = qr
    c
    c     # Author: Ralf Deiterding (based on rpn3euexact.f)
    c
          implicit double precision (a-h,o-z)
    c
          dimension wave(1-mbc:maxm+mbc, meqn, mwaves)
          dimension    s(1-mbc:maxm+mbc, mwaves)
          dimension   ql(1-mbc:maxm+mbc, meqn)
          dimension   qr(1-mbc:maxm+mbc, meqn)
          dimension  dfl(1-mbc:maxm+mbc, meqn)
          dimension  dfr(1-mbc:maxm+mbc, meqn)
          dimension auxl(1-mbc:maxm+mbc, maux, 3)
          dimension auxr(1-mbc:maxm+mbc, maux, 3)
    c
    c     local arrays -- common block comroe is passed to rpt3euznd
    c     ------------
          parameter (maxmrp = 1005) !# assumes atmost max(mx,my,mz) = 1000 with mbc=5
          parameter (minmrp = -4)   !# assumes at most mbc=5
          dimension delta(6)
          dimension f0(minmrp:maxmrp,6), fl(minmrp:maxmrp,6), fr(minmrp:maxmrp,6)
          dimension sl(2),sr(2)
          common /param/  gamma,gamma1,q0
          common /comroe/ u2v2w2(minmrp:maxmrp),
         &     u(minmrp:maxmrp),v(minmrp:maxmrp),w(minmrp:maxmrp),
         &     enth(minmrp:maxmrp),a(minmrp:maxmrp),Y(2,minmrp:maxmrp)
    c
    c     # Riemann solver returns flux differences
    c     ------------
          common /rpnflx/ mrpnflx
          mrpnflx = 0
    c
          if (minmrp.gt.1-mbc .or. maxmrp .lt. maxm+mbc) then
    	 write(6,*) 'need to increase maxmrp in rpA'
    	 stop
    	 endif
    c
    c     # set mu to point to  the component of the system that corresponds
    c     # to momentum in the direction of this slice, mv and mw to the 
    c     # orthogonal momentums:
    c
          if(ixyz .eq. 1)then
    	  mu = 3
    	  mv = 4
              mw = 5
          else if(ixyz .eq. 2)then
    	  mu = 4
    	  mv = 5
              mw = 3
          else
              mu = 5
              mv = 3
              mw = 4
          endif
    c
    c     # note that notation for u,v, and w reflects assumption that the 
    c     # Riemann problems are in the x-direction with u in the normal
    c     # direction and v and w in the orthogonal directions, but with the 
    c     # above definitions of mu, mv, and mw the routine also works with 
    c     # ixyz=2 and ixyz = 3
    c     # and returns, for example, f0 as the Godunov flux g0 for the
    c     # Riemann problems u_t + g(u)_y = 0 in the y-direction.
    c
    c
    c     # compute the Roe-averaged variables needed in the Roe solver.
    c     # These are stored in the common block comroe since they are
    c     # later used in routine rpt3euznd to do the transverse wave splitting.
    c
          do 10 i=2-mbc,mx+mbc
    c
    	 pl = gamma1*(qr(i-1,6) - qr(i-1,2)*q0 - 
         &        0.5d0*(qr(i-1,mu)**2+qr(i-1,mv)**2+qr(i-1,mw)**2)/
         &        (qr(i-1,1)+qr(i-1,2)))
    	 pr = gamma1*(ql(i,  6) - ql(i,  2)*q0 - 
         &        0.5d0*(ql(i,  mu)**2+ql(i,  mv)**2+ql(i,  mw)**2)/
         &        (ql(i,  1)+ql(i,  2)))
             rhsqrtl = dsqrt(qr(i-1,1) + qr(i-1,2))  
             rhsqrtr = dsqrt(ql(i,  1) + ql(i,  2))
             rhsq2 = rhsqrtl + rhsqrtr
    	 u(i) = (qr(i-1,mu)/rhsqrtl + ql(i,mu)/rhsqrtr) / rhsq2
    	 v(i) = (qr(i-1,mv)/rhsqrtl + ql(i,mv)/rhsqrtr) / rhsq2
    	 w(i) = (qr(i-1,mw)/rhsqrtl + ql(i,mw)/rhsqrtr) / rhsq2
    	 u2v2w2(i) = u(i)**2 + v(i)**2 + w(i)**2
    	 enth(i) = (((qr(i-1,6)+pl)/rhsqrtl
         &		   + (ql(i  ,6)+pr)/rhsqrtr)) / rhsq2
             Y(1,i) = (qr(i-1,1)/rhsqrtl + ql(i,1)/rhsqrtr) / rhsq2
             Y(2,i) = (qr(i-1,2)/rhsqrtl + ql(i,2)/rhsqrtr) / rhsq2
    c        # speed of sound
             a2 = gamma1*(enth(i) - 0.5d0*u2v2w2(i) - Y(2,i)*q0)
             a(i) = dsqrt(a2) 
    c
       10    continue
    c
          do 30 i=2-mbc,mx+mbc
    c
    c        # find a1 thru a5, the coefficients of the 5 eigenvectors:
    c
             do k = 1, 6
                delta(k) = ql(i,k) - qr(i-1,k)
             enddo
             drho = delta(1) + delta(2)
    c
             a2  = gamma1/a(i)**2 * (drho*0.5d0*u2v2w2(i) - delta(2)*q0 
         &        - (u(i)*delta(mu)+v(i)*delta(mv)+w(i)*delta(mw)) + 
         &        delta(6))
             a3 = delta(mv) - v(i)*drho
             a4 = delta(mw) - w(i)*drho
             a5 = 0.5d0*( a2 - ( u(i)*drho - delta(mu) )/a(i) )
             a1 = a2 - a5 
    c
    c        # Compute the waves.
    c
    c      # 1-wave
             wave(i,1,1)  = a1*Y(1,i)
             wave(i,2,1)  = a1*Y(2,i)
             wave(i,mu,1) = a1*(u(i) - a(i))
             wave(i,mv,1) = a1*v(i)
             wave(i,mw,1) = a1*w(i)
             wave(i,6,1)  = a1*(enth(i) - u(i)*a(i))
             s(i,1) = u(i)-a(i)
    c
    c      # 2-wave
             wave(i,1,2)  = delta(1) - Y(1,i)*a2
             wave(i,2,2)  = delta(2) - Y(2,i)*a2         
             wave(i,mu,2) = (drho - a2)*u(i)
             wave(i,mv,2) = (drho - a2)*v(i) + a3
             wave(i,mw,2) = (drho - a2)*w(i) + a4
             wave(i,6,2)  = (drho - a2)*0.5d0*u2v2w2(i) + 
         &        q0*(delta(2) - Y(2,i)*a2)  + a3*v(i) + a4*w(i)
             s(i,2) = u(i)
    c
    c      # 3-wave
             wave(i,1,3)  = a5*Y(1,i)
             wave(i,2,3)  = a5*Y(2,i)
             wave(i,mu,3) = a5*(u(i) + a(i))
             wave(i,mv,3) = a5*v(i)
             wave(i,mw,3) = a5*w(i)
             wave(i,6,3)  = a5*(enth(i) + u(i)*a(i))
             s(i,3) = u(i)+a(i)
    c                  
       30 continue
    c
    c     # compute Godunov flux f0:
    c     --------------------------
    c
    c     # compute Godunov flux f0 at each interface.  
    c     # Uses exact Riemann solver
    c
          do 200 i = 2-mbc, mx+mbc
    c
    	 rhol = qr(i-1,1) + qr(i-1,2)
    	 rhor = ql(i  ,1) + qr(i  ,2)
             Y2l = qr(i-1,2)/rhol
             Y2r = ql(i  ,2)/rhor
    	 ul = qr(i-1,mu)/rhol
    	 ur = ql(i  ,mu)/rhor
    	 vl = qr(i-1,mv)/rhol
    	 vr = ql(i  ,mv)/rhor
    	 wl = qr(i-1,mw)/rhol
    	 wr = ql(i  ,mw)/rhor
    	 pl = gamma1*(qr(i-1,6) - qr(i-1,2)*q0 - 
         &        0.5d0*(ul**2+vl**2+wl**2)*rhol)
    	 pr = gamma1*(ql(i,  6) - ql(i,  2)*q0 - 
         &        0.5d0*(ur**2+vr**2+wr**2)*rhor)
    c
    c        # iterate to find pstar, ustar:
    c
             alpha = 1.
             pstar = 0.5*(pl+pr)
             wsr = dsqrt(pr*rhor) * phi(pstar/pr)
             wsl = dsqrt(pl*rhol) * phi(pstar/pl)
    c        if (pl.eq.pr .and. rhol.eq.rhor) go to 60
    c
       40    do 50 iter=1,1000
    	    p1 = (ul-ur+pr/wsr+pl/wsl) / (1./wsr + 1./wsl)
    	    pstar = dmax1(p1,1d-6)*alpha + (1.-alpha)*pstar
    	    wr1 = wsr
    	    wl1 = wsl
                wsr = dsqrt(pr*rhor) * phi(pstar/pr)
                wsl = dsqrt(pl*rhol) * phi(pstar/pl)
    	    if (dmax1(abs(wr1-wsr),dabs(wl1-wsl)) .lt. 1d-6)
         &	       go to 60
       50       continue
    c
    c        # nonconvergence:
             alpha = alpha/2.
             if (alpha .gt. 0.1) go to 40
       	    write(6,*) 'no convergence',i,wr1,wsr,wl1,wsl
    	    wsr = .5*(wsr+wr1)
    	    wsl = .5*(wsl+wl1)
    c
       60    continue
             ustar = (pl-pr+wsr*ur+wsl*ul) / (wsr+wsl)
    c
    c        # left wave:
    c        ============
    c
             if (pstar .gt. pl) then
    c
    c            # shock:
                 sl(1) = ul - wsl/rhol
                 sr(1) = sl(1)
                 rho1 = wsl/(ustar-sl(1))
    c
    	   else
    c
    c            # rarefaction:
                 cl = dsqrt(gamma*pl/rhol)
                 cstar = cl + 0.5*gamma1*(ul-ustar)
                 sl(1) = ul-cl
                 sr(1) = ustar-cstar
                 rho1 = (pstar/pl)**(1./gamma) * rhol
    	   endif
    c
    c
    c
    c        # right wave:
    c        =============
    c
             if (pstar .ge. pr) then
    c
    c            # shock
                 sl(2) = ur + wsr/rhor
                 sr(2) = sl(2)
                 rho2 = wsr/(sl(2)-ustar)
    c
    	   else
    c
    c            # rarefaction:
                 cr = dsqrt(gamma*pr/rhor)
                 cstar = cr + 0.5*gamma1*(ustar-ur)
                 sr(2) = ur+cr
                 sl(2) = ustar+cstar
                 rho2 = (pstar/pr)**(1./gamma)*rhor
    	   endif
    c
    c
    c        # compute flux:
    c        ===============
    c
    c        # compute state (rhos,us,ps) at x/t = 0:
    c
             if (sl(1).gt.0) then
    	    rhos = rhol
    	    us = ul
    	    ps = pl
                vs = vl
                ws = wl
                Y2s  = Y2l
             else if (sr(1).le.0. .and. ustar.ge. 0.) then
    	    rhos = rho1
    	    us = ustar
    	    ps = pstar
                vs = vl
                ws = wl
                Y2s  = Y2l
             else if (ustar.lt.0. .and. sl(2).ge. 0.) then
    	    rhos = rho2
    	    us = ustar
    	    ps = pstar
                vs = vr
                ws = wr
                Y2s  = Y2r
             else if (sr(2).lt.0) then
    	    rhos = rhor
    	    us = ur
    	    ps = pr
                vs = vr
                ws = wr
                Y2s  = Y2r
             else if (sl(1).le.0. .and. sr(1).ge.0.) then
    c           # transonic 1-rarefaction 
                us = (gamma1*ul + 2.*cl)/(gamma+1.)
       	    e0 = pl/(rhol**gamma)
    	    rhos = (us**2/(gamma*e0))**(1./gamma1)
     	    ps = e0*rhos**gamma
                vs = vl
                ws = wl
                Y2s  = Y2l
             else if (sl(2).le.0. .and. sr(2).ge.0.) then
    c           # transonic 3-rarefaction 
                us = (gamma1*ur - 2.*cr)/(gamma+1.)
    	    e0 = pr/(rhor**gamma)
    	    rhos = (us**2/(gamma*e0))**(1./gamma1)
    	    ps = e0*rhos**gamma
                vs = vr
                ws = wr
                Y2s  = Y2r
             endif
    c
             f0(i,1)  = (1.d0-Y2s)*rhos*us
             f0(i,2)  = Y2s*rhos*us
             f0(i,mu) = rhos*us**2 + ps
             f0(i,mv) = rhos*us*vs
             f0(i,mw) = rhos*us*ws
             f0(i,6)  = us*(gamma*ps/gamma1 + Y2s*rhos*q0 + 
         &        0.5*rhos*(us**2+vs**2+ws**2))
      200    continue
    c
    c     # compute fluxes in each cell:
    c
          call flx3(ixyz,maxm,meqn,mbc,mx,qr,maux,auxr,dfr)
          call flx3(ixyz,maxm,meqn,mbc,mx,ql,maux,auxl,dfl)
    c
          do 210 m=1,6
    	 do 210 i = 1-mbc, mx+mbc
                fr(i,m) = dfr(i,m)
                fl(i,m) = dfl(i,m)
     210  continue
    c
    c     # compute the leftgoing and rightgoing flux differences:
          do 220 m=1,6
    	 do 220 i = 2-mbc, mx+mbc
    	    dfl(i,m) = f0(i,m) - fr(i-1,m)
    	    dfr(i,m) = fl(i,m) - f0(i,m)
      220       continue
    c
          return
          end
    c
    c
          double precision function phi(w)
          implicit double precision (a-h,o-z)
          common /param/  gamma,gamma1,q0
    c
          sqg = dsqrt(gamma)
          if (w .gt. 1.) then
              phi = dsqrt(w*(gamma+1.)/2. + gamma1/2.)
            else if (w .gt. 0.99999) then
    	  phi = sqg
    	else if (w .gt. .999) then
    	  phi = sqg + (2*gamma**2 - 3.*gamma + 1)
         &          *(w-1.) / (4.*sqg)
    	else
              phi = gamma1*(1.-w) / (2.*sqg*(1.-w**(gamma1/(2.*gamma))))
    	endif
          return
          end
    

<