• VTF
  • FSI
  • AMROC
  • SFC
  • Motion
  • STLIB
  • Main Page
  • src/3d/equations/euler/rp/rpn3euvlg.f

    c
    c
    c     ==================================================================
          subroutine rpn3eu(ixyz,maxm,meqn,mwaves,mbc,mx,ql,qr,
         &                  maux,auxl,auxr,wave,s,fl,fr)
    c     ==================================================================
    c
    c     # solve Riemann problems for the 3D Euler equations using 
    c     # van Leer's Flux Vector Splitting 
    c
    c     # On input, ql contains the state vector at the left edge of each cell
    c     #           qr contains the state vector at the right edge of each cell
    c     # This data is along a slice in the x-direction if ixyz=1
    c     #                               the y-direction if ixyz=2.
    c     #                               the z-direction if ixyz=3.
    c
    c     # On output, wave contains the waves, s the speeds, 
    c     # fl and fr the positive and negative flux.
    c
    c     # Note that the i'th Riemann problem has left state qr(i-1,:)
    c     #                                    and right state ql(i,:)
    c     # From the basic routine, this routine is called with ql = qr
    c
    c     # Copyright (C) 2002 Ralf Deiterding
    c     # Brandenburgische Universitaet Cottbus
    c
          implicit double precision (a-h,o-z)
          dimension wave(1-mbc:maxm+mbc, meqn, mwaves)
          dimension    s(1-mbc:maxm+mbc, mwaves)
          dimension   ql(1-mbc:maxm+mbc, meqn)
          dimension   qr(1-mbc:maxm+mbc, meqn)
          dimension   fl(1-mbc:maxm+mbc, meqn)
          dimension   fr(1-mbc:maxm+mbc, meqn)
          dimension auxl(1-mbc:maxm+mbc, maux, 3)
          dimension auxr(1-mbc:maxm+mbc, maux, 3)
          double precision Ml, Mr, sl(3), sr(3), fvl(5), fvr(5)
          common /param/  gamma,gamma1
    c
    c     # Method returns fluxes
    c     ------------
          common /rpnflx/ mrpnflx
          mrpnflx = 1
    c
    c     # set mu to point to  the component of the system that corresponds
    c     # to momentum in the direction of this slice, mv and mw to the 
    c     # orthogonal momentums:
    c
          if(ixyz .eq. 1)then
             mu = 2
             mv = 3
             mw = 4
          else if(ixyz .eq. 2)then
             mu = 3
             mv = 4
             mw = 2
          else
             mu = 4
             mv = 2
             mw = 3
          endif
    c
    c     # Van Leer's Flux Vector Splitting
    c
          gamma2 = gamma**2-1
          do 10 i=2-mbc,mx+mbc
             rhol = qr(i-1,1)
             rhor = ql(i  ,1)
             ul = qr(i-1,mu)/rhol
             ur = ql(i  ,mu)/rhor
             vl = qr(i-1,mv)/rhol
             vr = ql(i  ,mv)/rhor
             wl = qr(i-1,mw)/rhol
             wr = ql(i  ,mw)/rhor
             El = qr(i-1,5)/rhol
             Er = ql(i  ,5)/rhor
             pl = gamma1*(qr(i-1,5) - 0.5d0*(ul**2+vl**2+wl**2)*rhol)
             pr = gamma1*(ql(i  ,5) - 0.5d0*(ur**2+vr**2+wr**2)*rhor)
             al = dsqrt(gamma*pl/rhol)
             ar = dsqrt(gamma*pr/rhor)
    c
             Ml = ul/al
             Mr = ur/ar
    c
             sl(1) = ul-al
             sl(2) = ul
             sl(3) = ul+al
             sr(1) = ur-ar
             sr(2) = ur
             sr(3) = ur+ar
    c
             if (Ml.gt.1d0) then
                fvl(1)  = rhol*ul
                fvl(mu) = fvl(1)*ul+pl
                fvl(mv) = fvl(1)*vl
                fvl(mw) = fvl(1)*wl
                fvl(5)  = ul*(rhol*El+pl)
             else if (Ml.lt.-1.d0) then
                do m = 1,meqn
                   fvl(m) = 0.d0
                enddo
             else
                fvl(1)  = 0.25d0*rhol*al*(Ml+1.d0)**2
                fvl(mu) = fvl(1)*2.d0*al/gamma*(0.5d0*gamma1*Ml+1.d0)
                fvl(mv) = fvl(1)*vl
                fvl(mw) = fvl(1)*wl
                fvl(5)  = fvl(1)*(0.5d0*(vl**2+wl**2) + 2.d0*al**2/gamma2*
         &                        (0.5d0*gamma1*Ml+1.d0)**2)
             endif
    c
             if (Mr.lt.-1.d0) then
                fvr(1)  = rhor*ur
                fvr(mu) = fvr(1)*ur+pr
                fvr(mv) = fvr(1)*vr
                fvr(mw) = fvr(1)*wr
                fvr(5)  = ur*(rhor*Er+pr)
             else if (Mr.gt.1.d0) then
                do m = 1,meqn
                   fvr(m) = 0.d0
                enddo
             else
                fvr(1)  = -0.25d0*rhor*ar*(Mr-1.d0)**2
                fvr(mu) = fvr(1)*2.d0*ar/gamma*(0.5d0*gamma1*Mr-1.d0)
                fvr(mv) = fvr(1)*vr
                fvr(mw) = fvr(1)*wr
                fvr(5)  = fvr(1)*(0.5d0*(vr**2+wr**2) + 2.d0*ar**2/gamma2* 
         &                        (0.5d0*gamma1*Mr-1.d0)**2)
             endif
    c
             do 20 m = 1,meqn
                fl(i,m) = fvl(m) + fvr(m)
                fr(i,m) = -fl(i,m)
     20      continue
    c
             if (dabs(Ml).lt.1.d0) then
                facl = (gamma+3.d0)/(2.d0*gamma+dabs(Ml)*(3.d0-gamma))
             else
                facl = 1.d0
             endif
             if (dabs(Mr).lt.1.d0) then
                facr = (gamma+3.d0)/(2.d0*gamma+dabs(Mr)*(3.d0-gamma))
             else
                facr = 1.d0
             endif
    c
             do 10 mws=1,mwaves
                s(i,mws) = dmax1(dabs(facl*sl(mws)),dabs(facr*sr(mws)))
                do 10 m=1,meqn
                   wave(i,m,mws) = 0.d0
     10   continue
    c
          return
          end
    c
    

<