• VTF
  • FSI
  • AMROC
  • SFC
  • Motion
  • STLIB
  • Main Page
  • src/3d/equations/euler/rp/rpn3euvijag.f

    c
    c
    c     =====================================================
          subroutine rpn3eu(ixyz,maxm,meqn,mwaves,mbc,mx,ql,qr,
         &                  maux,auxl,auxr,wave,s,fl,fr)
    c     =====================================================
    c
    c     # solve Riemann problems for the 3D ZND-Euler equations using 
    c     # the Flux-Vector-Splitting of Vijayasundaram
    c
    c     # On input, ql contains the state vector at the left edge of each cell
    c     #           qr contains the state vector at the right edge of each cell
    c     # This data is along a slice in the x-direction if ixyz=1
    c     #                               the y-direction if ixyz=2.
    c     #                               the z-direction if ixyz=3.
    c
    c     # On output, wave contains the waves, s the speeds, 
    c     # fl and fr the positive and negative flux.
    c
    c     # Note that the i'th Riemann problem has left state qr(i-1,:)
    c     #                                    and right state ql(i,:)
    c     # From the routines, this routine is called with ql = qr
    c
    c     # Copyright (C) 2002 Ralf Deiterding
    c     # Brandenburgische Universitaet Cottbus
    c
          implicit double precision (a-h,o-z)
          dimension wave(1-mbc:maxm+mbc, meqn, mwaves)
          dimension    s(1-mbc:maxm+mbc, mwaves)
          dimension   ql(1-mbc:maxm+mbc, meqn)
          dimension   qr(1-mbc:maxm+mbc, meqn)
          dimension   fl(1-mbc:maxm+mbc, meqn)
          dimension   fr(1-mbc:maxm+mbc, meqn)
          dimension auxl(1-mbc:maxm+mbc, maux, 3)
          dimension auxr(1-mbc:maxm+mbc, maux, 3)
          double precision el(3), er(3)
          common /param/  gamma,gamma1
    c
    c     # Method returns fluxes
    c     ------------
          common /rpnflx/ mrpnflx
          mrpnflx = 1
    c
    c     # set mu to point to  the component of the system that corresponds
    c     # to momentum in the direction of this slice, mv and mw to the 
    c     # orthogonal momentum:
    c
          if(ixyz .eq. 1)then
    	  mu = 2
    	  mv = 3
              mw = 4
          else if(ixyz .eq. 2)then
    	  mu = 3
    	  mv = 4
              mw = 2
          else
              mu = 4
              mv = 2
              mw = 3
          endif
    c
          do 10 i=2-mbc,mx+mbc
             rhol  = qr(i-1,1)
             rhor  = ql(i  ,1)
             rhoul = qr(i-1,mu)
             rhour = ql(i  ,mu)
             rhovl = qr(i-1,mv)
             rhovr = ql(i  ,mv)
             rhowl = qr(i-1,mw)
             rhowr = ql(i  ,mw)
             rhoEl = qr(i-1,5)
             rhoEr = ql(i  ,5)
    c
             rho  = 0.5d0*(rhol  + rhor )
             rhou = 0.5d0*(rhoul + rhour)
             rhov = 0.5d0*(rhovl + rhovr)
             rhow = 0.5d0*(rhowl + rhowr)
             rhoE = 0.5d0*(rhoEl + rhoEr)
    c
             u = rhou/rho
             v = rhov/rho
             w = rhow/rho
    	 p = gamma1*(rhoE - 0.5d0*rho*(u**2+v**2+w**2))
             H = (rhoE+p)/rho
             if (p.le.0.d0.or.rho.le.0.d0) 
         &        write (6,*) 'Error in middle state in',i,p,pl,pr,
         &        rho,rhol,rhor,a,al,ar
             a = dsqrt(gamma*p/rho)
             f = 0.5d0/a**2
    c
             el(1) = 0.5d0*(u-a + dabs(u-a))
             el(2) = 0.5d0*(u   + dabs(u)  )
             el(3) = 0.5d0*(u+a + dabs(u+a))
             er(1) = 0.5d0*(u-a - dabs(u-a))
             er(2) = 0.5d0*(u   - dabs(u)  )
             er(3) = 0.5d0*(u+a - dabs(u+a))
    c
             zl = el(1)-el(3)
             zr = er(1)-er(3)
             ol = el(1)-2.d0*el(2)+el(3)
             or = er(1)-2.d0*er(2)+er(3)
             dul = a*(rhol*u-rhoul)
             dur = a*(rhor*u-rhour)
             dEl = gamma1*(rhoEl+0.5d0*rhol*(u**2+v**2+w**2)-
         &                 rhoul*u-rhovl*v-rhowl*w)
             dEr = gamma1*(rhoEr+0.5d0*rhor*(u**2+v**2+w**2)-
         &                 rhour*u-rhovr*v-rhowr*w)
             f1 =   f*(zl*dul + ol*dEl + zr*dur + or*dEr)
             f2 = a*f*(ol*dul + zl*dEl + or*dur + zr*dEr)
    c
             fl(i,1)  = rhol *el(2) + rhor *er(2) + f1
             fl(i,mu) = rhoul*el(2) + rhour*er(2) + u*f1 -   f2
             fl(i,mv) = rhovl*el(2) + rhovr*er(2) + v*f1
             fl(i,mw) = rhowl*el(2) + rhowr*er(2) + w*f1
             fl(i,5)  = rhoEl*el(2) + rhoEr*er(2) + H*f1 - u*f2
    c
             do 20 m = 1,meqn
                fr(i,m) = -fl(i,m)
     20      continue
    c
             do 10 mws=1,mwaves
                s(i,mws) = dmax1(dabs(el(mws)),dabs(er(mws)))
                do 10 m=1,meqn
                   wave(i,m,mws) = 0.d0
     10   continue
    c
          return
          end
    c
    

<