c c c ===================================================== subroutine rpn3eu(ixyz,maxm,meqn,mwaves,mbc,mx,ql,qr, & maux,auxl,auxr,wave,s,fl,fr) c ===================================================== c c # solve Riemann problems for the 3D ZND-Euler equations using c # the Flux-Vector-Splitting of Vijayasundaram c c # On input, ql contains the state vector at the left edge of each cell c # qr contains the state vector at the right edge of each cell c # This data is along a slice in the x-direction if ixyz=1 c # the y-direction if ixyz=2. c # the z-direction if ixyz=3. c c # On output, wave contains the waves, s the speeds, c # fl and fr the positive and negative flux. c c # Note that the i'th Riemann problem has left state qr(i-1,:) c # and right state ql(i,:) c # From the routines, this routine is called with ql = qr c c # Copyright (C) 2002 Ralf Deiterding c # Brandenburgische Universitaet Cottbus c implicit double precision (a-h,o-z) dimension wave(1-mbc:maxm+mbc, meqn, mwaves) dimension s(1-mbc:maxm+mbc, mwaves) dimension ql(1-mbc:maxm+mbc, meqn) dimension qr(1-mbc:maxm+mbc, meqn) dimension fl(1-mbc:maxm+mbc, meqn) dimension fr(1-mbc:maxm+mbc, meqn) dimension auxl(1-mbc:maxm+mbc, maux, 3) dimension auxr(1-mbc:maxm+mbc, maux, 3) double precision el(3), er(3) common /param/ gamma,gamma1 c c # Method returns fluxes c ------------ common /rpnflx/ mrpnflx mrpnflx = 1 c c # set mu to point to the component of the system that corresponds c # to momentum in the direction of this slice, mv and mw to the c # orthogonal momentum: c if(ixyz .eq. 1)then mu = 2 mv = 3 mw = 4 else if(ixyz .eq. 2)then mu = 3 mv = 4 mw = 2 else mu = 4 mv = 2 mw = 3 endif c do 10 i=2-mbc,mx+mbc rhol = qr(i-1,1) rhor = ql(i ,1) rhoul = qr(i-1,mu) rhour = ql(i ,mu) rhovl = qr(i-1,mv) rhovr = ql(i ,mv) rhowl = qr(i-1,mw) rhowr = ql(i ,mw) rhoEl = qr(i-1,5) rhoEr = ql(i ,5) c rho = 0.5d0*(rhol + rhor ) rhou = 0.5d0*(rhoul + rhour) rhov = 0.5d0*(rhovl + rhovr) rhow = 0.5d0*(rhowl + rhowr) rhoE = 0.5d0*(rhoEl + rhoEr) c u = rhou/rho v = rhov/rho w = rhow/rho p = gamma1*(rhoE - 0.5d0*rho*(u**2+v**2+w**2)) H = (rhoE+p)/rho if (p.le.0.d0.or.rho.le.0.d0) & write (6,*) 'Error in middle state in',i,p,pl,pr, & rho,rhol,rhor,a,al,ar a = dsqrt(gamma*p/rho) f = 0.5d0/a**2 c el(1) = 0.5d0*(u-a + dabs(u-a)) el(2) = 0.5d0*(u + dabs(u) ) el(3) = 0.5d0*(u+a + dabs(u+a)) er(1) = 0.5d0*(u-a - dabs(u-a)) er(2) = 0.5d0*(u - dabs(u) ) er(3) = 0.5d0*(u+a - dabs(u+a)) c zl = el(1)-el(3) zr = er(1)-er(3) ol = el(1)-2.d0*el(2)+el(3) or = er(1)-2.d0*er(2)+er(3) dul = a*(rhol*u-rhoul) dur = a*(rhor*u-rhour) dEl = gamma1*(rhoEl+0.5d0*rhol*(u**2+v**2+w**2)- & rhoul*u-rhovl*v-rhowl*w) dEr = gamma1*(rhoEr+0.5d0*rhor*(u**2+v**2+w**2)- & rhour*u-rhovr*v-rhowr*w) f1 = f*(zl*dul + ol*dEl + zr*dur + or*dEr) f2 = a*f*(ol*dul + zl*dEl + or*dur + zr*dEr) c fl(i,1) = rhol *el(2) + rhor *er(2) + f1 fl(i,mu) = rhoul*el(2) + rhour*er(2) + u*f1 - f2 fl(i,mv) = rhovl*el(2) + rhovr*er(2) + v*f1 fl(i,mw) = rhowl*el(2) + rhowr*er(2) + w*f1 fl(i,5) = rhoEl*el(2) + rhoEr*er(2) + H*f1 - u*f2 c do 20 m = 1,meqn fr(i,m) = -fl(i,m) 20 continue c do 10 mws=1,mwaves s(i,mws) = dmax1(dabs(el(mws)),dabs(er(mws))) do 10 m=1,meqn wave(i,m,mws) = 0.d0 10 continue c return end c