c c ========================================================= subroutine rpn3eurhok(ixyz,maxm,meqn,mwaves,mbc,mx,ql,qr,maux, & auxl,auxr,wave,s,amdq,apdq) c ========================================================= c c # solve Riemann problems for the 3D Euler equations of multiple c # thermally perfect gases using van Leer's Flux-Vector-Splitting c # following Shuen's approach c c # On input, ql contains the state vector at the left edge of each cell c # qr contains the state vector at the right edge of each cell c # This data is along a slice in the x-direction if ixyz=1 c # the y-direction if ixyz=2. c # the z-direction if ixyz=3. c c # On output, wave contains the waves, c # s the speeds, c # amdq the positive flux c # apdq the negative flux c # (the fluxes are stored twice to be consistent with the c # flux-difference splitting formulation) c c # Note that the i'th Riemann problem has left state qr(i-1,:) c # and right state ql(i,:) c # From the basic clawpack routine step1, rp is called with ql = qr = q. c c # Copyright (C) 2002 Ralf Deiterding c # Brandenburgische Universitaet Cottbus c implicit double precision (a-h,o-z) dimension ql(1-mbc:maxm+mbc, meqn) dimension qr(1-mbc:maxm+mbc, meqn) dimension s(1-mbc:maxm+mbc, mwaves) dimension wave(1-mbc:maxm+mbc, meqn, mwaves) dimension amdq(1-mbc:maxm+mbc, meqn) dimension apdq(1-mbc:maxm+mbc, meqn) dimension auxl(1-mbc:maxm+mbc, maux, 3) dimension auxr(1-mbc:maxm+mbc, maux, 3) c c define local arrays c include "ck.i" dimension Yl(LeNsp), Yr(LeNsp), el(3), er(3) dimension fvl(LeNsp+5), fvr(LeNsp+5), rkl(LeNsp), rkr(LeNsp) double precision Ml, Mr c c # Riemann solver returns fluxes c ------------ common /rpnflx/ mrpnflx mrpnflx = 1 c c # set mu to point to the component of the system that corresponds c # to momentum in the direction of this slice, mv and mw to the c # orthogonal momentums: c if(ixyz .eq. 1)then mu = Nsp+1 mv = Nsp+2 mw = Nsp+3 else if(ixyz .eq. 2)then mu = Nsp+2 mv = Nsp+3 mw = Nsp+1 else mu = Nsp+3 mv = Nsp+1 mw = Nsp+2 endif mE = Nsp+4 mT = Nsp+5 c do 10 i=2-mbc,mx+mbc rhol = 0.d0 rhor = 0.d0 rhoWl = 0.d0 rhoWr = 0.d0 do k = 1, Nsp rkl(k) = qr(i-1,k) rkr(k) = ql(i ,k) rhol = rhol + qr(i-1,k) rhor = rhor + ql(i ,k) rhoWl = rhoWl + qr(i-1,k)/Wk(k) rhoWr = rhoWr + ql(i ,k)/Wk(k) enddo do k = 1, Nsp Yl(k) = qr(i-1,k)/rhol Yr(k) = ql(i ,k)/rhor enddo rhoul = qr(i-1,mu) rhour = ql(i ,mu) ul = rhoul/rhol ur = rhour/rhor vl = qr(i-1,mv)/rhol vr = ql(i ,mv)/rhor wl = qr(i-1,mw)/rhol wr = ql(i ,mw)/rhor c c # left/right Temperatures already calculated c rhoel = qr(i-1,mE)-0.5d0*rhol*(ul**2+vl**2+wl**2) call SolveTrhok(qr(i-1,mT),rhoel,rhoWl,rkl,Nsp,ifail) if (ifail.ne.0) write(6,600) i-1,qr(i-1,mT) rhoer = ql(i ,mE)-0.5d0*rhor*(ur**2+vr**2+wr**2) call SolveTrhok(ql(i ,mT),rhoer,rhoWr,rkr,Nsp,ifail) if (ifail.ne.0) write(6,601) i ,ql(i ,mT) c Tl = qr(i-1,mT) Tr = ql(i ,mT) c pl = rhoWl*RU*Tl pr = rhoWr*RU*Tr Hl = (qr(i-1,mE)+pl)/rhol Hr = (ql(i ,mE)+pr)/rhor c c # Evaluate temperature depended gamma for left/right mixture c Cpl = avgtabip(Tl,Yl,cpk,Nsp) gamma1l = RU / ( rhol/rhoWl*Cpl - RU ) gammal = gamma1l + 1.d0 Cpr = avgtabip(Tr,Yr,cpk,Nsp) gamma1r = RU / ( rhor/rhoWr*Cpr - RU ) gammar = gamma1r + 1.d0 c al2 = gammal*pl/rhol al = dsqrt(al2) ar2 = gammar*pr/rhor ar = dsqrt(ar2) c Ml = ul/al Mr = ur/ar c el(1) = ul-al el(2) = ul el(3) = ul+al er(1) = ur-ar er(2) = ur er(3) = ur+ar c if (Ml.gt.1.d0) then do k = 1, Nsp fvl(k) = Yl(k)*rhoul enddo fvl(mu) = rhoul*ul+pl fvl(mv) = rhoul*vl fvl(mw) = rhoul*wl fvl(mE) = rhoul*Hl else if (Ml.lt.-1.d0) then do m = 1, Nsp+4 fvl(m) = 0.d0 enddo else fl = 0.25d0*rhol*al*(Ml+1.d0)**2 fhl = avgtabip(Tl,Yl,hms,Nsp)/al2 xl = fhl/(1.d0+2.d0*fhl) do k = 1, Nsp fvl(k) = fl*Yl(k) enddo fvl(mu) = fl*(ul-(ul-2.d0*al)/gammal) fvl(mv) = fl* vl fvl(mw) = fl* wl fvl(mE) = fl*(Hl-xl*(ul-al)**2) endif fvl(mT) = 0.d0 c if (Mr.lt.-1.d0) then do k = 1, Nsp fvr(k) = Yr(k)*rhour enddo fvr(mu) = rhour*ur+pr fvr(mv) = rhour*vr fvr(mw) = rhour*wr fvr(mE) = rhour*Hr else if (Mr.gt.1.d0) then do m = 1, Nsp+4 fvr(m) = 0.d0 enddo else fr = -0.25d0*rhor*ar*(Mr-1.d0)**2 fhr = avgtabip(Tr,Yr,hms,Nsp)/ar2 xr = fhr/(1.d0+2.d0*fhr) do k = 1, Nsp fvr(k) = fr*Yr(k) enddo fvr(mu) = fr*(ur-(ur+2.d0*ar)/gammar) fvr(mv) = fr* vr fvr(mw) = fr* wr fvr(mE) = fr*(Hr-xr*(ur+ar)**2) endif fvr(mT) = 0.d0 c do 20 m = 1,meqn amdq(i,m) = fvl(m) + fvr(m) apdq(i,m) = -amdq(i,m) 20 continue c if (dabs(Ml).lt.1.d0) then fl = (gammal+3.d0)/(2.d0*gammal+dabs(Ml)*(3.d0-gammal)) else fl = 1.d0 endif if (dabs(Mr).lt.1.d0) then fr = (gammar+3.d0)/(2.d0*gammar+dabs(Mr)*(3.d0-gammar)) else fr = 1.d0 endif c do 10 mws=1,mwaves s(i,mws) = dmax1(dabs(fl*el(mws)),dabs(fr*er(mws))) do 10 m=1,meqn wave(i,m,mws) = 0.d0 10 continue c 600 format('rpn3eurhok qr(',i2,'): T out of range using: ',f16.8) 601 format('rpn3eurhok ql(',i2,'): T out of range using: ',f16.8) return end c