• VTF
  • FSI
  • AMROC
  • SFC
  • Motion
  • STLIB
  • Main Page
  • src/3d/equations/euler/rp/rpn3eug.f

    c
    c
    c
    c     ==================================================================
          subroutine rpn3eu(ixyz,maxm,meqn,mwaves,mbc,mx,ql,qr,
         &			maux,auxl,auxr,wave,s,amdq,apdq)
    c     ==================================================================
    c
    c     # Roe-solver for the 3D Euler equations
    c
    c     # solve Riemann problems along one slice of data.
    c     # This data is along a slice in the x-direction if ixyz=1
    c     #                               the y-direction if ixyz=2.
    c     #                               the z-direction if ixyz=3.
    c
    c     # On input, ql contains the state vector at the left edge of each cell
    c     #           qr contains the state vector at the right edge of each cell
    c
    c     # auxl(i,ma,2) contains auxiliary data for cells along this slice,
    c     #    where ma=1,maux in the case where maux=method(7) > 0.
    c     # auxl(i,ma,1) and auxl(i,ma,3) contain auxiliary data along
    c     # neighboring slices that generally aren't needed in the rpn3 routine.
    c
    c     # On output, wave contains the waves, s the speeds, 
    c     # amdq and apdq the positive and negative flux.
    c
    c     # Note that the i'th Riemann problem has left state qr(i-1,:)
    c     #                                    and right state ql(i,:)
    c     # From the basic routines, this routine is called with ql = qr
    c
    c     Author:  Randall J. LeVeque
    c
          implicit double precision (a-h,o-z)
          dimension wave(1-mbc:maxm+mbc, meqn, mwaves)
          dimension    s(1-mbc:maxm+mbc, mwaves)
          dimension   ql(1-mbc:maxm+mbc, meqn)
          dimension   qr(1-mbc:maxm+mbc, meqn)
          dimension amdq(1-mbc:maxm+mbc, meqn)
          dimension apdq(1-mbc:maxm+mbc, meqn)
          dimension auxl(1-mbc:maxm+mbc, maux, 3)
          dimension auxr(1-mbc:maxm+mbc, maux, 3)
    c
    c     local arrays -- common block comroe is passed to rpt3eu
    c                     
    c     ------------
          parameter (maxmrp = 1005) !# assumes atmost max(mx,my,mz) = 1000 with mbc=5
          parameter (minmrp = -4)   !# assumes at most mbc=5
          dimension delta(5)
          logical efix
          common /param/  gamma,gamma1
          common /comroe/ u2v2w2(minmrp:maxmrp),
         &     u(minmrp:maxmrp),v(minmrp:maxmrp),w(minmrp:maxmrp),
         &     enth(minmrp:maxmrp),a(minmrp:maxmrp),g1a2(minmrp:maxmrp),
         &     euv(minmrp:maxmrp) 
    c
          data efix /.true./    !# use entropy fix for transonic rarefactions
    c
    c     # Riemann solver returns fluxes
    c     ------------
          common /rpnflx/ mrpnflx
          mrpnflx = 1
    c
          if (minmrp.gt.1-mbc .or. maxmrp .lt. maxm+mbc) then
    	 write(6,*) 'need to increase maxmrp in rpA'
    	 stop
    	 endif
    c
    c     # set mu to point to  the component of the system that corresponds
    c     # to momentum in the direction of this slice, mv and mw to the 
    c     # orthogonal momentums:
    c
          if(ixyz .eq. 1)then
    	  mu = 2
    	  mv = 3
              mw = 4
          else if(ixyz .eq. 2)then
    	  mu = 3
    	  mv = 4
              mw = 2
          else
              mu = 4
              mv = 2
              mw = 3
          endif
    c
    c
    c     # note that notation for u,v, and w reflects assumption that the 
    c     # Riemann problems are in the x-direction with u in the normal
    c     # direction and v and w in the orthogonal directions, but with the 
    c     # above definitions of mu, mv, and mw the routine also works with 
    c     # ixyz=2 and ixyz = 3
    c     # and returns, for example, f0 as the Godunov flux g0 for the
    c     # Riemann problems u_t + g(u)_y = 0 in the y-direction.
    c
    c
    c     # Compute the Roe-averaged variables needed in the Roe solver.
    c     # These are stored in the common block comroe since they are
    c     # later used in routine rpt3eu to do the transverse wave 
    c     # splitting.
    c
          do 10 i = 2-mbc, mx+mbc
    	 rhsqrtl = dsqrt(qr(i-1,1))
    	 rhsqrtr = dsqrt(ql(i,1))
    	 pl = gamma1*(qr(i-1,5) - 0.5d0*(qr(i-1,mu)**2 + 
         &		 qr(i-1,mv)**2 + qr(i-1,mw)**2)/qr(i-1,1))
    	 pr = gamma1*(ql(i,5) - 0.5d0*(ql(i,mu)**2 + 
         &		 ql(i,mv)**2 + ql(i,mw)**2)/ql(i,1))
    	 rhsq2 = rhsqrtl + rhsqrtr
    	 u(i) = (qr(i-1,mu)/rhsqrtl + ql(i,mu)/rhsqrtr) / rhsq2
    	 v(i) = (qr(i-1,mv)/rhsqrtl + ql(i,mv)/rhsqrtr) / rhsq2
    	 w(i) = (qr(i-1,mw)/rhsqrtl + ql(i,mw)/rhsqrtr) / rhsq2
    	 enth(i) = (((qr(i-1,5)+pl)/rhsqrtl 
         &		   + (ql(i,5)+pr)/rhsqrtr)) / rhsq2
    	 u2v2w2(i) = u(i)**2 + v(i)**2 + w(i)**2
             a2 = gamma1*(enth(i) - .5d0*u2v2w2(i))
             a(i) = dsqrt(a2)
    	 g1a2(i) = gamma1 / a2
    	 euv(i) = enth(i) - u2v2w2(i) 
       10 continue
    c
    c
    c     # now split the jump in q1d at each interface into waves
    c
    c     # find a1 thru a5, the coefficients of the 5 eigenvectors:
          do 20 i = 2-mbc, mx+mbc
             delta(1) = ql(i,1) - qr(i-1,1)
             delta(2) = ql(i,mu) - qr(i-1,mu)
             delta(3) = ql(i,mv) - qr(i-1,mv)
             delta(4) = ql(i,mw) - qr(i-1,mw)
             delta(5) = ql(i,5) - qr(i-1,5)
             a4 = g1a2(i) * (euv(i)*delta(1) 
         &      + u(i)*delta(2) + v(i)*delta(3) + w(i)*delta(4) 
         &      - delta(5))
             a2 = delta(3) - v(i)*delta(1)
             a3 = delta(4) - w(i)*delta(1)
             a5 = (delta(2) + (a(i)-u(i))*delta(1) - a(i)*a4) / (2.d0*a(i))
             a1 = delta(1) - a4 - a5
    c
    c        # Compute the waves.
    c        # Note that the 2-wave, 3-wave and 4-wave travel at the same speed 
    c        # and are lumped together in wave(.,.,2).  The 5-wave is then stored 
    c        # in wave(.,.,3).
    c
             wave(i,1,1)  = a1
             wave(i,mu,1) = a1*(u(i)-a(i))
             wave(i,mv,1) = a1*v(i)
             wave(i,mw,1) = a1*w(i)
             wave(i,5,1)  = a1*(enth(i) - u(i)*a(i))
             s(i,1) = u(i)-a(i)
    c
             wave(i,1,2)  = a4
             wave(i,mu,2) = a4*u(i)
             wave(i,mv,2) = a4*v(i)	 	 + a2
             wave(i,mw,2) = a4*w(i)	 	 + a3
             wave(i,5,2)  = a4*0.5d0*u2v2w2(i)  + a2*v(i) + a3*w(i)
             s(i,2) = u(i)
    c
             wave(i,1,3)  = a5
             wave(i,mu,3) = a5*(u(i)+a(i))
             wave(i,mv,3) = a5*v(i)
             wave(i,mw,3) = a5*w(i)
             wave(i,5,3)  = a5*(enth(i)+u(i)*a(i))
             s(i,3) = u(i)+a(i)
       20    continue
    c
    c
    c    # compute flux differences amdq and apdq.
    c    ---------------------------------------
    c
          if (efix) go to 110
    c
    c     # no entropy fix
    c     ----------------
    c
    c     # amdq = SUM s*wave   over left-going waves
    c
          do 100 m=1,meqn
             do 100 i=2-mbc, mx+mbc
    	    amdq(i,m) = 0.d0
    	    do 90 mws=1,mwaves
    	       if (s(i,mws) .lt. 0.d0) then
                      amdq(i,m) = amdq(i,m) + s(i,mws)*wave(i,m,mws)
                   endif
     90         continue
     100  continue
          go to 900	    
    c
    c-----------------------------------------------------
    c
      110 continue
    c
    c     # With entropy fix
    c     ------------------
    c
    c    # compute flux differences amdq and apdq.
    c    # First compute amdq as sum of s*wave for left going waves.
    c    # Incorporate entropy fix by adding a modified fraction of wave
    c    # if s should change sign.
    c
          do 200 i = 2-mbc, mx+mbc
    c
    c        # check 1-wave:
    c        ---------------
    c
    	 rhoim1 = qr(i-1,1)
    	 pim1 = gamma1*(qr(i-1,5) - 0.5d0*(qr(i-1,mu)**2 
         &           + qr(i-1,mv)**2 + qr(i-1,mw)**2) / rhoim1)
    	 cim1 = dsqrt(gamma*pim1/rhoim1)
    	 s0 = qr(i-1,mu)/rhoim1 - cim1     !# u-c in left state (cell i-1)
    c
    c
    c        # check for fully supersonic case:
    	 if (s0.ge.0.d0 .and. s(i,1).gt.0.d0)then 
    c            # everything is right-going
    	     do 60 m=1,meqn
    		amdq(i,m) = 0.d0
       60           continue
    	     go to 200 
    	     endif
    c
             rho1 = qr(i-1,1) + wave(i,1,1)
             rhou1 = qr(i-1,mu) + wave(i,mu,1)
             rhov1 = qr(i-1,mv) + wave(i,mv,1)
             rhow1 = qr(i-1,mw) + wave(i,mw,1)
             en1 = qr(i-1,5) + wave(i,5,1)
             p1 = gamma1*(en1 - 0.5d0*(rhou1**2 + rhov1**2 + 
         &                rhow1**2)/rho1)
             c1 = dsqrt(gamma*p1/rho1)
             s1 = rhou1/rho1 - c1  !# u-c to right of 1-wave
             if (s0.lt.0.d0 .and. s1.gt.0.d0) then
    c            # transonic rarefaction in the 1-wave
    	     sfract = s0 * (s1-s(i,1)) / (s1-s0)
    	   else if (s(i,1) .lt. 0.d0) then
    c	     # 1-wave is leftgoing
    	     sfract = s(i,1)
    	   else
    c	     # 1-wave is rightgoing
                 sfract = 0.d0   !# this shouldn't happen since s0 < 0
    	   endif
    	 do 120 m=1,meqn
    	    amdq(i,m) = sfract*wave(i,m,1)
      120       continue
    c
    c        # check 2-wave:
    c        ---------------
    c
             if (s(i,2) .ge. 0.d0) go to 200  !# 2-,3- and 4- waves are rightgoing
    	 do 140 m=1,meqn
    	    amdq(i,m) = amdq(i,m) + s(i,2)*wave(i,m,2)
      140       continue
    c
    c        # check 3-wave:
    c        ---------------
    c
    	 rhoi = ql(i,1)
    	 pi = gamma1*(ql(i,5) - 0.5d0*(ql(i,mu)**2 
         &           + ql(i,mv)**2 + ql(i,mw)**2) / rhoi)
    	 ci = dsqrt(gamma*pi/rhoi)
    	 s3 = ql(i,mu)/rhoi + ci     !# u+c in right state  (cell i)
    c
             rho2 = ql(i,1) - wave(i,1,3)
             rhou2 = ql(i,mu) - wave(i,mu,3)
             rhov2 = ql(i,mv) - wave(i,mv,3)
             rhow2 = ql(i,mw) - wave(i,mw,3)
             en2 = ql(i,5) - wave(i,5,3)
             p2 = gamma1*(en2 - 0.5d0*(rhou2**2 + rhov2**2 +
         &                rhow2**2)/rho2)
             c2 = dsqrt(gamma*p2/rho2)
             s2 = rhou2/rho2 + c2   !# u+c to left of 3-wave
             if (s2 .lt. 0.d0 .and. s3.gt.0.d0 ) then
    c            # transonic rarefaction in the 3-wave
    	     sfract = s2 * (s3-s(i,3)) / (s3-s2)
    	   else if (s(i,3) .lt. 0.d0) then
    c            # 3-wave is leftgoing
    	     sfract = s(i,3)
    	   else 
    c            # 3-wave is rightgoing
    	     go to 200
    	   endif
    c
    	 do 160 m=1,5
    	    amdq(i,m) = amdq(i,m) + sfract*wave(i,m,3)
      160       continue
      200    continue
    c
      900 continue
          call flx3(ixyz,maxm,meqn,mbc,mx,qr,maux,auxr,apdq)
    c
          do 300 i = 2-mbc, mx+mbc
             do 300 m=1,meqn
                amdq(i,m) = apdq(i-1,m) + amdq(i,m) 
     300  continue
    c
          do 310 i = 2-mbc, mx+mbc
             do 310 m=1,meqn
                apdq(i,m) = -amdq(i,m) 
     310  continue
    c
          return
          end
    

<