• VTF
  • FSI
  • AMROC
  • SFC
  • Motion
  • STLIB
  • Main Page
  • src/3d/equations/euler/rp/rpn3euforceg.f

    c
    c
    c     =====================================================
          subroutine rpn3eu(ixyz,maxm,meqn,mwaves,mbc,mx,ql,qr,
         &                  maux,auxl,auxr,wave,s,fl,fr)
    c     =====================================================
    c
    c     # FORCE scheme for the 3D Euler equations. The flux of the FORCE
    c     # scheme is the arithmetic mean of the fluxes of the finite difference
    c     # schemes of Richtmyer and Lax-Friedrichs. Use parameters
    c     # richtmyer, laxfriedrich to switch to the original schemes.
    c
    c     # Eleuterio F. Toro, "Riemann solvers and numerical methods
    c     # for fluid dynamics", Springer-Verlag, Berlin 1997.
    c
    c     # On input, ql contains the state vector at the left edge of each cell
    c     #           qr contains the state vector at the right edge of each cell
    c     # This data is along a slice in the x-direction if ixyz=1
    c     #                               the y-direction if ixyz=2.
    c     #                               the z-direction if ixyz=3.
    c
    c     # On output, wave contains the waves, s the speeds, 
    c     # fl and fr the positive and negative flux.
    c
    c     # Note that the i'th Riemann problem has left state qr(i-1,:)
    c     #                                    and right state ql(i,:)
    c     # From the basic routine step1, this routine is called with ql = qr
    c
    c     # Copyright (C) 2002 Ralf Deiterding
    c     # Brandenburgische Universitaet Cottbus
    c
          implicit double precision (a-h,o-z)
          dimension wave(1-mbc:maxm+mbc, meqn, mwaves)
          dimension    s(1-mbc:maxm+mbc, mwaves)
          dimension   ql(1-mbc:maxm+mbc, meqn)
          dimension   qr(1-mbc:maxm+mbc, meqn)
          dimension   fl(1-mbc:maxm+mbc, meqn)
          dimension   fr(1-mbc:maxm+mbc, meqn)
          dimension auxl(1-mbc:maxm+mbc, maux, 3)
          dimension auxr(1-mbc:maxm+mbc, maux, 3)
          common /param/  gamma,gamma1
          include "call.i"
    c
    c     # local storage
    c     ---------------
          parameter (maxmrp = 1005)  !# assumes at most 1000 grid points with mbc=5
          parameter (minmrp = -4)   !# assumes at most mbc=5
          dimension qint(minmrp:maxmrp2,5), fint(minmrp:maxmrp,5), 
         &     auxint(minmrp:maxmrp,0,3)
          logical richtmyer, laxfriedrich
    c
          data richtmyer    /.true./     
          data laxfriedrich /.true./     
    c
    c     # Method returns fluxes
    c     ------------
          common /rpnflx/ mrpnflx
          mrpnflx = 1
    c
    c     # set mu to point to  the component of the system that corresponds
    c     # to momentum in the direction of this slice, mv and mw to the 
    c     # orthogonal momentum:
    c
          if(ixyz .eq. 1)then
    	  mu = 2
    	  mv = 3
              mw = 4
          else if(ixyz .eq. 2)then
    	  mu = 3
    	  mv = 4
              mw = 2
          else
              mu = 4
              mv = 2
              mw = 3
          endif
    c
          dxdt = 0.5d0*dxcom/dtcom
          dtdx = 0.5d0*dtcom/dxcom
    c
          call flx3(ixyz,maxm,meqn,mbc,mx,ql,maux,auxl,fl)
          call flx3(ixyz,maxm,meqn,mbc,mx,qr,maux,auxr,fr)
    c
          do 50 i = 2-mbc, mx+mbc
             do 50 m=1,meqn
                qint(i,m) = 0.5d0*(qr(i-1,m) + ql(i,m)) + 
         &           dtdx*(fr(i-1,m) - fl(i,m))
     50   continue
          do 60 i = 2-mbc, mx+mbc
             do 60 m=1,maux
                auxint(i,m,2) = 0.5d0*(auxl(i,m,2) + auxr(i,m,2)) 
     60   continue
          call flx3(ixyz,max2,meqn,mbc,mx,qint,maux,auxint,fint)
    c
          do 100 i = 2-mbc, mx+mbc
             ul = 0.5d0*qr(i-1,mu)/qr(i-1,1)
             ur = 0.5d0*ql(i  ,mu)/ql(i  ,1)
             pl = gamma1*(qr(i-1,5) - 0.5d0*(qr(i-1,mu)**2+
         &        qr(i-1,mv)**2+qr(i-1,mw)**2)/qr(i-1,1))
             pr = gamma1*(ql(i  ,5) - 0.5d0*(ql(i  ,mu)**2+
         &        ql(i  ,mv)**2+ql(i  ,mw)**2)/ql(i  ,1))
             al = dsqrt(gamma*pl/qr(i-1,1))
             ar = dsqrt(gamma*pr/ql(i  ,1))
             s(i,1) = dmax1(dabs(ul-al),dabs(ur-ar))
             s(i,2) = dmax1(dabs(ul   ),dabs(ur   ))
             s(i,3) = dmax1(dabs(ul+al),dabs(ur+ar))
             do 110 mws=1,mwaves
                do 110 m=1,meqn
                   wave(i,m,mws) = 0.d0
     110     continue
             do 100 m=1,meqn
                if (richtmyer) 
         &           fl(i,m) = fint(i,m)
                if (laxfriedrich) 
         &           fl(i,m) = dxdt*(qr(i-1,m) - ql(i,m)) + 
         &           0.5d0*(fr(i-1,m) + fl(i,m))
                if (richtmyer.and.laxfriedrich)
         &           fl(i,m) = 0.5d0*(fl(i,m) + fint(i,m))
     100  continue
    c
          do 120 i = 2-mbc, mx+mbc
             do 120 m=1,meqn
                fr(i,m) = -fl(i,m)
     120  continue
    c
          return
          end
    c
    

<