c c c ===================================================== subroutine rpn3eu(ixyz,maxm,meqn,mwaves,mbc,mx,ql,qr, & maux,auxl,auxr,wave,s,fl,fr) c ===================================================== c c # FORCE scheme for the 3D Euler equations. The flux of the FORCE c # scheme is the arithmetic mean of the fluxes of the finite difference c # schemes of Richtmyer and Lax-Friedrichs. Use parameters c # richtmyer, laxfriedrich to switch to the original schemes. c c # Eleuterio F. Toro, "Riemann solvers and numerical methods c # for fluid dynamics", Springer-Verlag, Berlin 1997. c c # On input, ql contains the state vector at the left edge of each cell c # qr contains the state vector at the right edge of each cell c # This data is along a slice in the x-direction if ixyz=1 c # the y-direction if ixyz=2. c # the z-direction if ixyz=3. c c # On output, wave contains the waves, s the speeds, c # fl and fr the positive and negative flux. c c # Note that the i'th Riemann problem has left state qr(i-1,:) c # and right state ql(i,:) c # From the basic routine step1, this routine is called with ql = qr c c # Copyright (C) 2002 Ralf Deiterding c # Brandenburgische Universitaet Cottbus c implicit double precision (a-h,o-z) dimension wave(1-mbc:maxm+mbc, meqn, mwaves) dimension s(1-mbc:maxm+mbc, mwaves) dimension ql(1-mbc:maxm+mbc, meqn) dimension qr(1-mbc:maxm+mbc, meqn) dimension fl(1-mbc:maxm+mbc, meqn) dimension fr(1-mbc:maxm+mbc, meqn) dimension auxl(1-mbc:maxm+mbc, maux, 3) dimension auxr(1-mbc:maxm+mbc, maux, 3) common /param/ gamma,gamma1 include "call.i" c c # local storage c --------------- parameter (maxmrp = 1005) !# assumes at most 1000 grid points with mbc=5 parameter (minmrp = -4) !# assumes at most mbc=5 dimension qint(minmrp:maxmrp2,5), fint(minmrp:maxmrp,5), & auxint(minmrp:maxmrp,0,3) logical richtmyer, laxfriedrich c data richtmyer /.true./ data laxfriedrich /.true./ c c # Method returns fluxes c ------------ common /rpnflx/ mrpnflx mrpnflx = 1 c c # set mu to point to the component of the system that corresponds c # to momentum in the direction of this slice, mv and mw to the c # orthogonal momentum: c if(ixyz .eq. 1)then mu = 2 mv = 3 mw = 4 else if(ixyz .eq. 2)then mu = 3 mv = 4 mw = 2 else mu = 4 mv = 2 mw = 3 endif c dxdt = 0.5d0*dxcom/dtcom dtdx = 0.5d0*dtcom/dxcom c call flx3(ixyz,maxm,meqn,mbc,mx,ql,maux,auxl,fl) call flx3(ixyz,maxm,meqn,mbc,mx,qr,maux,auxr,fr) c do 50 i = 2-mbc, mx+mbc do 50 m=1,meqn qint(i,m) = 0.5d0*(qr(i-1,m) + ql(i,m)) + & dtdx*(fr(i-1,m) - fl(i,m)) 50 continue do 60 i = 2-mbc, mx+mbc do 60 m=1,maux auxint(i,m,2) = 0.5d0*(auxl(i,m,2) + auxr(i,m,2)) 60 continue call flx3(ixyz,max2,meqn,mbc,mx,qint,maux,auxint,fint) c do 100 i = 2-mbc, mx+mbc ul = 0.5d0*qr(i-1,mu)/qr(i-1,1) ur = 0.5d0*ql(i ,mu)/ql(i ,1) pl = gamma1*(qr(i-1,5) - 0.5d0*(qr(i-1,mu)**2+ & qr(i-1,mv)**2+qr(i-1,mw)**2)/qr(i-1,1)) pr = gamma1*(ql(i ,5) - 0.5d0*(ql(i ,mu)**2+ & ql(i ,mv)**2+ql(i ,mw)**2)/ql(i ,1)) al = dsqrt(gamma*pl/qr(i-1,1)) ar = dsqrt(gamma*pr/ql(i ,1)) s(i,1) = dmax1(dabs(ul-al),dabs(ur-ar)) s(i,2) = dmax1(dabs(ul ),dabs(ur )) s(i,3) = dmax1(dabs(ul+al),dabs(ur+ar)) do 110 mws=1,mwaves do 110 m=1,meqn wave(i,m,mws) = 0.d0 110 continue do 100 m=1,meqn if (richtmyer) & fl(i,m) = fint(i,m) if (laxfriedrich) & fl(i,m) = dxdt*(qr(i-1,m) - ql(i,m)) + & 0.5d0*(fr(i-1,m) + fl(i,m)) if (richtmyer.and.laxfriedrich) & fl(i,m) = 0.5d0*(fl(i,m) + fint(i,m)) 100 continue c do 120 i = 2-mbc, mx+mbc do 120 m=1,meqn fr(i,m) = -fl(i,m) 120 continue c return end c