• VTF
  • FSI
  • AMROC
  • SFC
  • Motion
  • STLIB
  • Main Page
  • src/3d/equations/euler/rp/rpn3euausmdvg.f

    c
    c
    c     ==================================================================
          subroutine rpn3eu(ixyz,maxm,meqn,mwaves,mbc,mx,ql,qr,
         &			maux,auxl,auxr,wave,s,fl,fr)
    c     ==================================================================
    c
    c     # solve Riemann problems for the 3D Euler equations using 
    c     # an improved version of the Liou-Steffen Flux-Vector-Splitting 
    c   
    c     # Yasuhiro Wada, Meng-Sing Liou "An accurate and robust flux
    c     # splitting scheme for shock and contact discontinuities",
    c     # SIAM J. Sci. Comput., Vol. 18, No.2, pp 633-657, May 1997.
    c
    c     # On input, ql contains the state vector at the left edge of each cell
    c     #           qr contains the state vector at the right edge of each cell
    c     # This data is along a slice in the x-direction if ixyz=1
    c     #                               the y-direction if ixyz=2.
    c     #                               the z-direction if ixyz=3.
    c
    c     # On output, wave contains the waves, 
    c     #            s the speeds, fl and fr the positive and negative flux.
    c
    c     # Note that the i'th Riemann problem has left state qr(i-1,:)
    c     #                                    and right state ql(i,:)
    c     # From the basic routines, rp is called with ql = qr = q.
    c
    c     # Copyright (C) 2002 Ralf Deiterding
    c     # Brandenburgische Universitaet Cottbus
    c
          implicit double precision (a-h,o-z)
          dimension wave(1-mbc:maxm+mbc, meqn, mwaves)
          dimension    s(1-mbc:maxm+mbc, mwaves)
          dimension   ql(1-mbc:maxm+mbc, meqn)
          dimension   qr(1-mbc:maxm+mbc, meqn)
          dimension   fl(1-mbc:maxm+mbc, meqn)
          dimension   fr(1-mbc:maxm+mbc, meqn)
          dimension auxl(1-mbc:maxm+mbc, maux, 3)
          dimension auxr(1-mbc:maxm+mbc, maux, 3)
          double precision l(5), r(5)
          common /param/  gamma,gamma1
    c
    c     # Method returns fluxes
    c     ------------
          common /rpnflx/ mrpnflx
          mrpnflx = 1
    c
    c     # set mu to point to  the component of the system that corresponds
    c     # to momentum in the direction of this slice, mv and mw to the 
    c     # orthogonal momentum:
    c
          if(ixyz .eq. 1)then
    	  mu = 2
    	  mv = 3
              mw = 4
          else if(ixyz .eq. 2)then
    	  mu = 3
    	  mv = 4
              mw = 2
          else
              mu = 4
              mv = 2
              mw = 3
          endif
    c
    c     # AUSM Flux Vector Splitting
    c
          do 10 i=2-mbc,mx+mbc
             rhol = qr(i-1,1)
             rhor = ql(i  ,1)
             ul = qr(i-1,mu)/rhol
             ur = ql(i  ,mu)/rhor
             vl = qr(i-1,mv)/rhol
             vr = ql(i  ,mv)/rhor
             wl = qr(i-1,mw)/rhol
             wr = ql(i  ,mw)/rhor
    	 pl = gamma1*(qr(i-1,5) - 0.5d0*(ul**2+vl**2+wl**2)*rhol)
    	 pr = gamma1*(ql(i  ,5) - 0.5d0*(ur**2+vr**2+wr**2)*rhor)
             Hl = (qr(i-1,5)+pl)/rhol
             Hr = (ql(i  ,5)+pr)/rhor
             al = dsqrt(gamma*pl/rhol)
             ar = dsqrt(gamma*pr/rhor)
    c
             am = dmax1(al,ar)
             alphal = 2.d0*(pl/rhol)/(pl/rhol+pr/rhor)
             alphar = 2.d0*(pr/rhor)/(pl/rhol+pr/rhor)
    c
             ulp = 0.5d0*(ul+dabs(ul))
             plp = pl*ulp/ul
             if (dabs(ul).le.am) then
                ulp = 0.25d0*alphal*(ul+al)**2/am + (1.d0-alphal)*ulp
                plp = 0.25d0*pl*(ul+al)**2/am**2*(2.d0-ul/am)
             endif
    c
             urm = 0.5d0*(ur-dabs(ur))
             prm = pr*urm/ur
             if (dabs(ur).le.am) then
                urm = -0.25d0*alphar*(ur-ar)**2/am + (1.d0-alphar)*urm
                prm =  0.25d0*pr*(ur-ar)**2/am**2*(2.d0+ur/am)
             endif
    c
    c     #  Blending between AUSMV and AUSMD 
    c     #  sf=1.d0 gives AUSMV, sf=-1.d0 gives AUSMD
             sf = dmin1(1.d0, 10.d0*dabs(pr-pl)/dmin1(pl,pr))
    c
             l(1)  = 0.5d0*(ulp*rhol+dabs(ulp*rhol))
             l(mu) = 0.5d0*((1.d0+sf)*ulp*rhol*ul + (1.d0-sf)*l(1)*ul) + plp
             l(mv) = l(1)*vl
             l(mw) = l(1)*wl
             l(5)  = l(1)*Hl
    c
             r(1)  = 0.5d0*(urm*rhor-dabs(urm*rhor))
             r(mu) = 0.5d0*((1.d0+sf)*urm*rhor*ur + (1.d0-sf)*r(1)*ur) + prm
             r(mv) = r(1)*vr
             r(mw) = r(1)*wr
             r(5)  = r(1)*Hr
    c
             do 20 m = 1,meqn
                fl(i,m) = l(m) + r(m)
                fr(i,m) = -fl(i,m)
     20      continue
    c
             s(i,1) = 0.5d0*(ul-al + ur-ar)
             s(i,2) = 0.5d0*(ul    + ur)
             s(i,3) = 0.5d0*(ul+al + ur+ar)
             do 10 mws=1,mwaves
                do 10 m=1,meqn
                   wave(i,m,mws) = 0.d0
     10   continue
    c
          return
          end
    c
    c
    

<