• VTF
  • FSI
  • AMROC
  • SFC
  • Motion
  • STLIB
  • Main Page
  • src/3d/equations/advection/rp/rpn3ad1.f

    c
    c
    c
    c     ==================================================================
          subroutine rpn3ad1(ixyz,maxm,meqn,mwaves,mbc,mx,ql,qr,
         &                   maux,auxl,auxr,wave,s,amdq,apdq)
    c     ==================================================================
    c
    c     # Riemann-solver for the advection equation
    c     #    q_t  +  u*q_x + v*q_y + w*q_z = 0
    c     # where u and v are a given velocity field.
    c
    c       -----------------------------------------------------------
    c     # In advective form, with interface velocities specified in
    c     # the auxiliary variable
    c     # aux(i,j,1)  =  u-velocity at left edge of cell (i,j,k)
    c     # aux(i,j,2)  =  v-velocity at bottom edge of cell (i,j,k)
    c     # aux(i,j,3)  =  w-velocity at back edge of cell (i,j,k)
    c       -----------------------------------------------------------
    c
    c     # solve Riemann problems along one slice of data.
    c     # This data is along a slice in the x-direction if ixyz=1
    c     #                               the y-direction if ixyz=2.
    c     #                               the z-direction if ixyz=3.
    c
    c     # On input, ql contains the state vector at the left edge of each cell
    c     #           qr contains the state vector at the right edge of each cell
    c
    c     # auxl(i,ma,2) contains auxiliary data for cells along this slice,
    c     #    where ma=1,maux in the case where maux=method(7) > 0.
    c     # auxl(i,ma,1) and auxl(i,ma,3) contain auxiliary data along
    c     # neighboring slices that generally aren't needed in the rpn3 routine.
    c
    c     # On output, wave contains the waves, s the speeds,
    c     # and amdq, apdq the left-going and right-going flux differences,
    c     # respectively.  Note that in this advective form, the sum of
    c     # amdq and apdq is not equal to a difference of fluxes except in the
    c     # case of constant velocities.
    c
    c     # Note that the i'th Riemann problem has left state qr(i-1,:)
    c     #                                    and right state ql(i,:)
    c     # From the basic clawpack routines, this routine is called with ql = qr
    c
          implicit double precision(a-h,o-z)
    c
          dimension wave(1-mbc:maxm+mbc, meqn, mwaves)
          dimension    s(1-mbc:maxm+mbc, mwaves)
          dimension   ql(1-mbc:maxm+mbc, meqn)
          dimension   qr(1-mbc:maxm+mbc, meqn)
          dimension amdq(1-mbc:maxm+mbc, meqn)
          dimension apdq(1-mbc:maxm+mbc, meqn)
          dimension auxl(1-mbc:maxm+mbc, maux, 3)
          dimension auxr(1-mbc:maxm+mbc, maux, 3)
    c
    c     # Riemann solver returns flux differences
    c     ------------
          common /rpnflx/ mrpnflx
          mrpnflx = 0
    c
    c     # Set wave, speed, and flux differences:
    c     ------------------------------------------
    c
          do 30 i = 2-mbc, mx+mbc
             wave(i,1,1) = ql(i,1) - qr(i-1,1)
             s(i,1) = auxl(i,ixyz,2)
    c        # The flux difference df = s*wave all goes in the downwind direction:
             amdq(i,1) = dmin1(auxl(i,ixyz,2), 0.d0) * wave(i,1,1)
             apdq(i,1) = dmax1(auxl(i,ixyz,2), 0.d0) * wave(i,1,1)
       30 continue
    c
          return
          end
    

<