• VTF
  • FSI
  • AMROC
  • SFC
  • Motion
  • STLIB
  • Main Page
  • src/3d/equations/acoustics/rp/rpn3acv.f

    c
    c
    c
    c     ==================================================================
          subroutine rpn3acv(ixyz,maxm,meqn,mwaves,mbc,mx,ql,qr,
         &			 maux,auxl,auxr,wave,s,amdq,apdq)
    c     ==================================================================
    c
    c     # Riemann solver for the acoustics equations in 3d, with varying
    c     # material properties.
    c
    c     # auxl(i,1) holds impedance rho,
    c     # auxl(i,2) holds sound speed c, 
    c
    c     # Note that although there are 4 eigenvectors, two eigenvalues are
    c     # always zero and so we only need to compute 2 waves.
    c      
    c     # Solve Riemann problems along one slice of data.
    c     # This data is along a slice in the x-direction if ixyz=1
    c     #                               the y-direction if ixyz=2.
    c     #                               the z-direction if ixyz=3.
    c
    c     # On input, ql contains the state vector at the left edge of each cell
    c     #           qr contains the state vector at the right edge of each cell
    c
    c     # Note that the i'th Riemann problem has left state qr(i-1,:)
    c     #                                    and right state ql(i,:)
    c     # From the basic clawpack routines, this routine is called with ql = qr
    c
    c
          implicit real*8(a-h,o-z)
          dimension wave(1-mbc:maxm+mbc, meqn, mwaves)
          dimension    s(1-mbc:maxm+mbc, mwaves)
          dimension   ql(1-mbc:maxm+mbc, meqn)
          dimension   qr(1-mbc:maxm+mbc, meqn)
          dimension amdq(1-mbc:maxm+mbc, meqn)
          dimension apdq(1-mbc:maxm+mbc, meqn)
          dimension auxl(1-mbc:maxm+mbc, maux, 3)
          dimension auxr(1-mbc:maxm+mbc, maux, 3)
    c
    c     local arrays
    c     ------------
          dimension delta(3)
    c
    c
    c     # set mu to point to  the component of the system that corresponds
    c     # to velocity in the direction of this slice, mv to the orthogonal
    c     # velocity.
    c
    c
          if (ixyz.eq.1) then
              mu = 2
              mv = 3
              mw = 4
            else if (ixyz.eq.2) then
              mu = 3
              mv = 4
              mw = 2
            else if (ixyz.eq.3) then
              mu = 4
              mv = 2
              mw = 3
            endif
    
    c
    c     # split the jump in q at each interface into waves
    c     # The jump is split into a leftgoing wave traveling at speed -c
    c     # relative to the material properties to the left of the interface,
    c     # and a rightgoing wave traveling at speed +c
    c     # relative to the material properties to the right of the interface,
    c
    c     # find a1 and a2, the coefficients of the 2 eigenvectors:
          do 20 i = 2-mbc, mx+mbc
             delta(1) = ql(i,1) - qr(i-1,1)
             delta(2) = ql(i,mu) - qr(i-1,mu)
    c        # impedances:
             zi = auxl(i,1,2)*auxl(i,2,2)
             zim = auxl(i-1,1,2)*auxl(i-1,2,2)
    
             a1 = (-delta(1) + zi*delta(2)) / (zim + zi)
             a2 =  (delta(1) + zim*delta(2)) / (zim + zi)
    
    
    c
    c        # Compute the waves.
    c
             wave(i,1,1) = -a1*zim
             wave(i,mu,1) = a1
             wave(i,mv,1) = 0.d0
             wave(i,mw,1) = 0.d0
             s(i,1) = -auxl(i-1,2,2)
    c
             wave(i,1,2) = a2*zi
             wave(i,mu,2) = a2
             wave(i,mv,2) = 0.d0
             wave(i,mw,2) = 0.d0
             s(i,2) = auxl(i,2,2)
    c
       20    continue
    c
    c
    c     # compute the leftgoing and rightgoing flux differences:
    c     # Note s(i,1) < 0   and   s(i,2) > 0.
    c
          do 220 m=1,meqn
             do 220 i = 2-mbc, mx+mbc
                amdq(i,m) = s(i,1)*wave(i,m,1)
                apdq(i,m) = s(i,2)*wave(i,m,2)
      220       continue
    c
    c
          return
          end
    

<