• VTF
  • FSI
  • AMROC
  • SFC
  • Motion
  • STLIB
  • Main Page
  • src/2d/equations/euler/rpznd/rpn2euzndg.f

    c
    c =========================================================
          subroutine rpn2euznd(ixy,maxm,meqn,mwaves,mbc,mx,ql,qr,maux,
         &     auxl,auxr,wave,s,amdq,apdq)
    c =========================================================
    c
    c     # solve Riemann problems for the 2D ZND-Euler equations using Roe's 
    c     # approximate Riemann solver.  
    c
    c     # On input, ql contains the state vector at the left edge of each cell
    c     #           qr contains the state vector at the right edge of each cell
    c
    c     # This data is along a slice in the x-direction if ixy=1 
    c     #                            or the y-direction if ixy=2.
    c     # On output, wave contains the waves, s the speeds, 
    c     # amdq and apdq the positive and negative flux.
    c
    c     # Note that the i'th Riemann problem has left state qr(i-1,:)
    c     #                                    and right state ql(i,:)
    c     # From the basic routines, this routine is called with ql = qr
    c
    c     # Author: Ralf Deiterding (based on rpn2eu.f)
    c
          implicit double precision (a-h,o-z)
    c
          dimension wave(1-mbc:maxm+mbc, meqn, mwaves)
          dimension    s(1-mbc:maxm+mbc, mwaves)
          dimension   ql(1-mbc:maxm+mbc, meqn)
          dimension   qr(1-mbc:maxm+mbc, meqn)
          dimension amdq(1-mbc:maxm+mbc, meqn)
          dimension apdq(1-mbc:maxm+mbc, meqn)
    c
    c     local arrays -- common block comroe is passed to rpt2eu
    c     ------------
          parameter (maxm2 = 10005)  !# assumes at most 10000x10000 grid with mbc=5
          parameter (minm2 = -4)     !# assumes at most mbc=5
          dimension delta(5)
          logical efix, pfix
          common /param/  gamma,gamma1,q0
          common /comroe/ u2v2(minm2:maxm2),u(minm2:maxm2),v(minm2:maxm2),
         &       enth(minm2:maxm2),a(minm2:maxm2),Y(2,minm2:maxm2)
          dimension fr(minm2:maxm2,5), fl(minm2:maxm2,5)
    c
          data efix /.true./    !# use entropy fix for transonic rarefactions
          data pfix /.true./   !# use Larrouturou's positivity fix for species
    c
    c     # Riemann solver returns fluxes
    c     ------------
          common /rpnflx/ mrpnflx
          mrpnflx = 1
    c
          if (minm2.gt.1-mbc .or. maxm2 .lt. maxm+mbc) then
    	 write(6,*) 'need to increase maxm2 in rpA'
    	 stop
          endif
    c     
    c     # set mu to point to  the component of the system that corresponds
    c     # to momentum in the direction of this slice, mv to the orthogonal
    c     # momentum:
    c
          if (ixy.eq.1) then
             mu = 3
             mv = 4
          else
             mu = 4
             mv = 3
          endif
    c
    c     # note that notation for u and v reflects assumption that the 
    c     # Riemann problems are in the x-direction with u in the normal
    c     # direciton and v in the orthogonal direcion, but with the above
    c     # definitions of mu and mv the routine also works with ixy=2
    c     # and returns, for example, f0 as the Godunov flux g0 for the
    c     # Riemann problems u_t + g(u)_y = 0 in the y-direction.
    c
    c
    c     # compute the Roe-averaged variables needed in the Roe solver.
    c     # These are stored in the common block comroe since they are
    c     # later used in routine rpt2eu to do the transverse wave splitting.
    c
          do 10 i=2-mbc,mx+mbc
    c
    	 pl = gamma1*(qr(i-1,5) - qr(i-1,2)*q0 - 
         &        0.5d0*(qr(i-1,mu)**2+qr(i-1,mv)**2)/(qr(i-1,1)+qr(i-1,2)))
    	 pr = gamma1*(ql(i,  5) - ql(i,  2)*q0 - 
         &        0.5d0*(ql(i,  mu)**2+ql(i,  mv)**2)/(ql(i,  1)+ql(i,  2)))
             rhsqrtl = dsqrt(qr(i-1,1) + qr(i-1,2))  
             rhsqrtr = dsqrt(ql(i,  1) + ql(i,  2))
             rhsq2 = rhsqrtl + rhsqrtr
    	 u(i) = (qr(i-1,mu)/rhsqrtl + ql(i,mu)/rhsqrtr) / rhsq2
    	 v(i) = (qr(i-1,mv)/rhsqrtl + ql(i,mv)/rhsqrtr) / rhsq2
    	 u2v2(i) = u(i)**2 + v(i)**2
    	 enth(i) = (((qr(i-1,5)+pl)/rhsqrtl
         &		   + (ql(i  ,5)+pr)/rhsqrtr)) / rhsq2
             Y(1,i) = (qr(i-1,1)/rhsqrtl + ql(i,1)/rhsqrtr) / rhsq2
             Y(2,i) = (qr(i-1,2)/rhsqrtl + ql(i,2)/rhsqrtr) / rhsq2
    c        # speed of sound
             a2 = gamma1*(enth(i) - 0.5d0*u2v2(i) - Y(2,i)*q0)
             a(i) = dsqrt(a2) 
    c
       10    continue
    c
          do 30 i=2-mbc,mx+mbc
    c
    c        # find a1 thru a3, the coefficients of the 4 eigenvectors:
    c
             do k = 1, 5
                delta(k) = ql(i,k) - qr(i-1,k)
             enddo
             drho = delta(1) + delta(2)
    c
             a2  = gamma1/a(i)**2 * (drho*0.5d0*u2v2(i) - delta(2)*q0 
         &        - (u(i)*delta(mu)+v(i)*delta(mv)) + delta(5))
             a3 = delta(mv) - v(i)*drho
             a4 = 0.5d0*( a2 - ( u(i)*drho - delta(mu) )/a(i) )
             a1 = a2 - a4 
    c
    c        # Compute the waves.
    c
    c      # 1-wave
             wave(i,1,1)  = a1*Y(1,i)
             wave(i,2,1)  = a1*Y(2,i)
             wave(i,mu,1) = a1*(u(i) - a(i))
             wave(i,mv,1) = a1*v(i)
             wave(i,5,1)  = a1*(enth(i) - u(i)*a(i))
             s(i,1) = u(i)-a(i)
    c
    c      # 2-wave
             wave(i,1,2)  = delta(1) - Y(1,i)*a2
             wave(i,2,2)  = delta(2) - Y(2,i)*a2         
             wave(i,mu,2) = (drho - a2)*u(i)
             wave(i,mv,2) = (drho - a2)*v(i) + a3
             wave(i,5,2)  = (drho - a2)*0.5d0*u2v2(i) + 
         &        q0*(delta(2) - Y(2,i)*a2)  + a3*v(i)
             s(i,2) = u(i)
    c
    c      # 3-wave
             wave(i,1,3)  = a4*Y(1,i)
             wave(i,2,3)  = a4*Y(2,i)
             wave(i,mu,3) = a4*(u(i) + a(i))
             wave(i,mv,3) = a4*v(i)
             wave(i,5,3)  = a4*(enth(i) + u(i)*a(i))
             s(i,3) = u(i)+a(i)
    c                  
       30 continue
    c
    c     # compute Godunov flux f0:
    c     --------------------------
    c
          if (efix) go to 110
    c
    c     # no entropy fix
    c     ----------------
    c
    c     # amdq = SUM s*wave   over left-going waves
    c     # apdq = SUM s*wave   over right-going waves
    c
          do 100 m=1,meqn
             do 100 i=2-mbc, mx+mbc
                amdq(i,m) = 0.d0
                apdq(i,m) = 0.d0
                do 90 mw=1,mwaves
                   if (s(i,mw) .lt. 0.d0) then
                       amdq(i,m) = amdq(i,m) + s(i,mw)*wave(i,m,mw)
                     else
                       apdq(i,m) = apdq(i,m) + s(i,mw)*wave(i,m,mw)
                     endif
       90       continue
      100 continue
          go to 900
      110 continue
    c
    c     # With entropy fix
    c     ------------------
    c
    c    # compute flux differences amdq and apdq.
    c    # First compute amdq as sum of s*wave for left going waves.
    c    # Incorporate entropy fix by adding a modified fraction of wave
    c    # if s should change sign.
    c
          do 200 i=2-mbc,mx+mbc
    c
    c        # check 1-wave:
    c        ---------------
    c
             rk1  = qr(i-1,1)
             rk2  = qr(i-1,2)
             rhou = qr(i-1,mu)
             rhov = qr(i-1,mv)
             rhoE = qr(i-1,5) 
             rho  = rk1 + rk2
    	 p = gamma1*(rhoE - rk2*q0 - 0.5d0*(rhou**2+rhov**2)/rho)
             if ((rho.le.0.d0.or.p.le.0.d0).and.hll) go to 200
             c = dsqrt(gamma*p/rho)
             s0 = rhou/rho - c     !# u-c in left state (cell i-1)
    *        write(6,*) 'left state 0', a(i), c, T
    c 
    c        # check for fully supersonic case:
             if (s0.ge.0.d0 .and. s(i,1).gt.0.d0)  then
    c           # everything is right-going
                do 60 m=1,meqn
                   amdq(i,m) = 0.d0
       60       continue
                go to 200
             endif
    c
             rk1  = rk1  + wave(i,1,1)
             rk2  = rk2  + wave(i,2,1)
             rhou = rhou + wave(i,mu,1)
             rhov = rhov + wave(i,mv,1)
             rhoE = rhoE + wave(i,5,1)
             rho  = rk1 + rk2
    	 p = gamma1*(rhoE - rk2*q0 - 0.5d0*(rhou**2+rhov**2)/rho)
             if ((rho.le.0.d0.or.p.le.0.d0).and.hll) go to 200
             c = dsqrt(gamma*p/rho)
             s1 = rhou/rho - c  !# u-c to right of 1-wave
    *        write(6,*) 'left state 1', a(i), c, T
    c
             if (s0.lt.0.d0 .and. s1.gt.0.d0) then
    c            # transonic rarefaction in the 1-wave
                 sfract = s0 * (s1-s(i,1)) / (s1-s0)
               else if (s(i,1) .lt. 0.d0) then
    c            # 1-wave is leftgoing
                 sfract = s(i,1)
               else
    c            # 1-wave is rightgoing
                 sfract = 0.d0   !# this shouldn't happen since s0 < 0
               endif
             do 120 m=1,meqn
                amdq(i,m) = sfract*wave(i,m,1)
      120    continue 
    c
    c        # check 2-wave:
    c        ---------------
    c
             if (s(i,2) .ge. 0.d0) go to 200  !# 2-wave is rightgoing
             do 140 m=1,meqn
                amdq(i,m) = amdq(i,m) + s(i,2)*wave(i,m,2)
      140    continue
    c
    c        # check 3-wave:
    c        ---------------
    c
             rk1  = ql(i,1)
             rk2  = ql(i,2)
             rhou = ql(i,mu)
             rhov = ql(i,mv)
             rhoE = ql(i,5) 
             rho  = rk1 + rk2
    	 p = gamma1*(rhoE - rk2*q0 - 0.5d0*(rhou**2+rhov**2)/rho)
             if ((rho.le.0.d0.or.p.le.0.d0).and.hll) go to 200
             c = dsqrt(gamma*p/rho)
             s3 = rhou/rho + c     !# u+c in right state  (cell i)
    *        write(6,*) 'right state 1', a(i), c, T
    c          
             rk1  = rk1  - wave(i,1,3)
             rk2  = rk2  - wave(i,2,3)
             rhou = rhou - wave(i,mu,3)
             rhov = rhov - wave(i,mv,3)
             rhoE = rhoE - wave(i,5,3)
             rho  = rk1 + rk2
    	 p = gamma1*(rhoE - rk2*q0 - 0.5d0*(rhou**2+rhov**2)/rho)
             if ((rho.le.0.d0.or.p.le.0.d0).and.hll) go to 200
             c = dsqrt(gamma*p/rho)
             s2 = rhou/rho + c   !# u+c to left of 3-wave
    *        write(6,*) 'right state 0', a(i), c, T
    c
             if (s2 .lt. 0.d0 .and. s3.gt.0.d0) then
    c            # transonic rarefaction in the 3-wave
                 sfract = s2 * (s3-s(i,3)) / (s3-s2)
               else if (s(i,3) .lt. 0.d0) then
    c            # 3-wave is leftgoing
                 sfract = s(i,3)
               else
    c            # 3-wave is rightgoing
                 go to 200
               endif
    c
             do 160 m=1,meqn
                amdq(i,m) = amdq(i,m) + sfract*wave(i,m,3)
      160    continue
      200 continue
    c
    c     # compute the rightgoing flux differences:
    c     # df = SUM s*wave   is the total flux difference and apdq = df - amdq
    c
          do 220 m=1,meqn
             do 220 i = 2-mbc, mx+mbc
                df = 0.d0
                do 210 mw=1,mwaves
                   df = df + s(i,mw)*wave(i,m,mw)
      210       continue
                apdq(i,m) = df - amdq(i,m)
      220 continue 
    c
      900 continue
    c
          if (pfix) then
             do 300 i=2-mbc,mx+mbc
                amdr = amdq(i,1)+amdq(i,2)
                apdr = apdq(i,1)+apdq(i,2)
                rhol = qr(i-1,1)+qr(i-1,2)
                rhor = ql(i  ,1)+ql(i  ,2)
                do 300 m=1,2
                   if (qr(i-1,mu)+amdr.gt.0.d0) then
                      Z = qr(i-1,m)/rhol
                   else
                      Z = ql(i  ,m)/rhor
                   endif
                   amdq(i,m) = Z*amdr + (Z-qr(i-1,m)/rhol)*qr(i-1,mu)
                   apdq(i,m) = Z*apdr - (Z-ql(i  ,m)/rhor)*ql(i  ,mu)
     300     continue    
          endif
    c
          call flx2(ixy,maxm,meqn,mbc,mx,qr,maux,auxr,fr)
          call flx2(ixy,maxm,meqn,mbc,mx,ql,maux,auxl,fl)
    c
          do 400 i = 2-mbc, mx+mbc
             do 400 m=1,meqn
                amdq(i,m) =   fr(i-1,m) + amdq(i,m) 
                apdq(i,m) = -(fl(i  ,m) - apdq(i,m)) 
     400  continue
    c
          return
    c
          return
          end
    c
    

<