c c ========================================================= subroutine rpn2euznd(ixy,maxm,meqn,mwaves,mbc,mx,ql,qr,maux, & auxl,auxr,wave,s,amdq,apdq) c ========================================================= c c # Riemann solver for the 2D ZND-Euler equations. c # The waves are computed using the Roe approximation. c c # On input, ql contains the state vector at the left edge of each cell c # qr contains the state vector at the right edge of each cell c c # This data is along a slice in the x-direction if ixy=1 c # or the y-direction if ixy=2. c # On output, wave contains the waves, c # s the speeds, c # amdq the left-going flux difference A^- \Delta q c # apdq the right-going flux difference A^+ \Delta q c c # Note that the i'th Riemann problem has left state qr(i-1,:) c # and right state ql(i,:) c # From the basic clawpack routines, this routine is called with ql = qr c c # Author: Ralf Deiterding (based on rpn2euexact.f) c implicit double precision (a-h,o-z) c dimension wave(1-mbc:maxm+mbc, meqn, mwaves) dimension s(1-mbc:maxm+mbc, mwaves) dimension ql(1-mbc:maxm+mbc, meqn) dimension qr(1-mbc:maxm+mbc, meqn) dimension apdq(1-mbc:maxm+mbc, meqn) dimension amdq(1-mbc:maxm+mbc, meqn) c c local arrays -- common block comroe is passed to rpt2eu c ------------ parameter (maxm2 = 10005) !# assumes at most 10000x10000 grid with mbc=5 parameter (minm2 = -4) !# assumes at most mbc=5 dimension delta(5) dimension f0(minm2:maxm2,5), fl(minm2:maxm2,5), fr(minm2:maxm2,5) dimension sl(2), sr(2) common /param/ gamma,gamma1,q0 common /comroe/ u2v2(minm2:maxm2),u(minm2:maxm2),v(minm2:maxm2), & enth(minm2:maxm2),a(minm2:maxm2),Y(2,minm2:maxm2) c c # Riemann solver returns flux differences c ------------ common /rpnflx/ mrpnflx mrpnflx = 0 c if (minm2.gt.1-mbc .or. maxm2 .lt. maxm+mbc) then write(6,*) 'need to increase maxm2 in rpA' stop endif c c # set mu to point to the component of the system that corresponds c # to momentum in the direction of this slice, mv to the orthogonal c # momentum: c if (ixy.eq.1) then mu = 3 mv = 4 else mu = 4 mv = 3 endif c c # note that notation for u and v reflects assumption that the c # Riemann problems are in the x-direction with u in the normal c # direciton and v in the orthogonal direcion, but with the above c # definitions of mu and mv the routine also works with ixy=2 c # and returns, for example, f0 as the Godunov flux g0 for the c # Riemann problems u_t + g(u)_y = 0 in the y-direction. c c c # compute the Roe-averaged variables needed in the Roe solver. c # These are stored in the common block comroe since they are c # later used in routine rpt2eu to do the transverse wave splitting. c do 10 i=2-mbc,mx+mbc c pl = gamma1*(qr(i-1,5) - qr(i-1,2)*q0 - & 0.5d0*(qr(i-1,mu)**2+qr(i-1,mv)**2)/(qr(i-1,1)+qr(i-1,2))) pr = gamma1*(ql(i, 5) - ql(i, 2)*q0 - & 0.5d0*(ql(i, mu)**2+ql(i, mv)**2)/(ql(i, 1)+ql(i, 2))) rhsqrtl = dsqrt(qr(i-1,1) + qr(i-1,2)) rhsqrtr = dsqrt(ql(i, 1) + ql(i, 2)) rhsq2 = rhsqrtl + rhsqrtr u(i) = (qr(i-1,mu)/rhsqrtl + ql(i,mu)/rhsqrtr) / rhsq2 v(i) = (qr(i-1,mv)/rhsqrtl + ql(i,mv)/rhsqrtr) / rhsq2 u2v2(i) = u(i)**2 + v(i)**2 enth(i) = (((qr(i-1,5)+pl)/rhsqrtl & + (ql(i ,5)+pr)/rhsqrtr)) / rhsq2 Y(1,i) = (qr(i-1,1)/rhsqrtl + ql(i,1)/rhsqrtr) / rhsq2 Y(2,i) = (qr(i-1,2)/rhsqrtl + ql(i,2)/rhsqrtr) / rhsq2 c # speed of sound a2 = gamma1*(enth(i) - 0.5d0*u2v2(i) - Y(2,i)*q0) a(i) = dsqrt(a2) c 10 continue c do 30 i=2-mbc,mx+mbc c c # find a1 thru a3, the coefficients of the 4 eigenvectors: c do k = 1, 5 delta(k) = ql(i,k) - qr(i-1,k) enddo drho = delta(1) + delta(2) c a2 = gamma1/a(i)**2 * (drho*0.5d0*u2v2(i) - delta(2)*q0 & - (u(i)*delta(mu)+v(i)*delta(mv)) + delta(5)) a3 = delta(mv) - v(i)*drho a4 = 0.5d0*( a2 - ( u(i)*drho - delta(mu) )/a(i) ) a1 = a2 - a4 c c # Compute the waves. c c # 1-wave wave(i,1,1) = a1*Y(1,i) wave(i,2,1) = a1*Y(2,i) wave(i,mu,1) = a1*(u(i) - a(i)) wave(i,mv,1) = a1*v(i) wave(i,5,1) = a1*(enth(i) - u(i)*a(i)) s(i,1) = u(i)-a(i) c c # 2-wave wave(i,1,2) = delta(1) - Y(1,i)*a2 wave(i,2,2) = delta(2) - Y(2,i)*a2 wave(i,mu,2) = (drho - a2)*u(i) wave(i,mv,2) = (drho - a2)*v(i) + a3 wave(i,5,2) = (drho - a2)*0.5d0*u2v2(i) + & q0*(delta(2) - Y(2,i)*a2) + a3*v(i) s(i,2) = u(i) c c # 3-wave wave(i,1,3) = a4*Y(1,i) wave(i,2,3) = a4*Y(2,i) wave(i,mu,3) = a4*(u(i) + a(i)) wave(i,mv,3) = a4*v(i) wave(i,5,3) = a4*(enth(i) + u(i)*a(i)) s(i,3) = u(i)+a(i) c 30 continue c c # compute Godunov flux f0: c -------------------------- c c # compute Godunov flux f0 at each interface. c # Uses exact Riemann solver c do 200 i = 2-mbc, mx+mbc c rhol = qr(i-1,1) + qr(i-1,2) rhor = ql(i ,1) + qr(i ,2) Y2l = qr(i-1,2)/rhol Y2r = ql(i ,2)/rhor ul = qr(i-1,mu)/rhol ur = ql(i ,mu)/rhor vl = qr(i-1,mv)/rhol vr = ql(i ,mv)/rhor pl = gamma1*(qr(i-1,5) - qr(i-1,2)*q0 - 0.5d0*(ul**2+vl**2)*rhol) pr = gamma1*(ql(i, 5) - ql(i, 2)*q0 - 0.5d0*(ur**2+vr**2)*rhor) c c # iterate to find pstar, ustar: c alpha = 1. pstar = 0.5*(pl+pr) wr = dsqrt(pr*rhor) * phi(pstar/pr) wl = dsqrt(pl*rhol) * phi(pstar/pl) c if (pl.eq.pr .and. rhol.eq.rhor) go to 60 c 40 do 50 iter=1,20 p1 = (ul-ur+pr/wr+pl/wl) / (1./wr + 1./wl) pstar = dmax1(p1,1d-6)*alpha + (1.-alpha)*pstar wr1 = wr wl1 = wl wr = dsqrt(pr*rhor) * phi(pstar/pr) wl = dsqrt(pl*rhol) * phi(pstar/pl) if (dmax1(abs(wr1-wr),dabs(wl1-wl)) .lt. 1d-6) & go to 60 50 continue c c # nonconvergence: alpha = alpha/2. if (alpha .gt. 0.001) go to 40 write(6,*) 'no convergence',wr1,wr,wl1,wl wr = .5*(wr+wr1) wl = .5*(wl+wl1) c 60 continue ustar = (pl-pr+wr*ur+wl*ul) / (wr+wl) c c # left wave: c ============ c if (pstar .gt. pl) then c c # shock: sl(1) = ul - wl/rhol sr(1) = sl(1) rho1 = wl/(ustar-sl(1)) c else c c # rarefaction: cl = dsqrt(gamma*pl/rhol) cstar = cl + 0.5*gamma1*(ul-ustar) sl(1) = ul-cl sr(1) = ustar-cstar rho1 = (pstar/pl)**(1./gamma) * rhol endif c c # right wave: c ============= c if (pstar .ge. pr) then c c # shock sl(2) = ur + wr/rhor sr(2) = sl(2) rho2 = wr/(sl(2)-ustar) c else c c # rarefaction: cr = dsqrt(gamma*pr/rhor) cstar = cr + 0.5*gamma1*(ustar-ur) sr(2) = ur+cr sl(2) = ustar+cstar rho2 = (pstar/pr)**(1./gamma)*rhor endif c c # compute flux: c =============== c c # compute state (rhos,us,ps) at x/t = 0: c if (sl(1).gt.0) then rhos = rhol us = ul ps = pl vs = vl Y2s = Y2l else if (sr(1).le.0. .and. ustar.ge. 0.) then rhos = rho1 us = ustar ps = pstar vs = vl Y2s = Y2l else if (ustar.lt.0. .and. sl(2).ge. 0.) then rhos = rho2 us = ustar ps = pstar vs = vr Y2s = Y2r else if (sr(2).lt.0) then rhos = rhor us = ur ps = pr vs = vr Y2s = Y2r else if (sl(1).le.0. .and. sr(1).ge.0.) then c # transonic 1-rarefaction us = (gamma1*ul + 2.*cl)/(gamma+1.) e0 = pl/(rhol**gamma) rhos = (us**2/(gamma*e0))**(1./gamma1) ps = e0*rhos**gamma vs = vl Y2s = Y2l else if (sl(2).le.0. .and. sr(2).ge.0.) then c # transonic 3-rarefaction us = (gamma1*ur - 2.*cr)/(gamma+1.) e0 = pr/(rhor**gamma) rhos = (us**2/(gamma*e0))**(1./gamma1) ps = e0*rhos**gamma vs = vr Y2s = Y2r endif c f0(i,1) = (1.d0-Y2s)*rhos*us f0(i,2) = Y2s*rhos*us f0(i,mu) = rhos*us**2 + ps f0(i,mv) = rhos*us*vs f0(i,5) = us*(gamma*ps/gamma1 + Y2s*rhos*q0 + & 0.5*rhos*(us**2+vs**2)) 200 continue c c # compute fluxes in each cell: c do 210 i = 1-mbc, mx+mbc c c # at left edge of cell: rho = ql(i,1)+ql(i,2) ul = ql(i,mu)/rho p = gamma1*(ql(i,5) - ql(i,2)*q0 - & 0.5d0*(ql(i,mu)**2+ql(i,mv)**2)/rho) fl(i,1) = ql(i,1)*ul fl(i,2) = ql(i,2)*ul fl(i,mu) = ql(i,mu)*ul + p fl(i,mv) = ql(i,mv)*ul fl(i,5) = ul*(ql(i,5) + p) c c # at right edge of cell: rho = qr(i,1)+qr(i,2) ur = qr(i,mu)/rho p = gamma1*(qr(i,5) - qr(i,2)*q0 - & 0.5d0*(qr(i,mu)**2+qr(i,mv)**2)/rho) fr(i,1) = qr(i,1)*ur fr(i,2) = qr(i,2)*ur fr(i,mu) = qr(i,mu)*ur + p fr(i,mv) = qr(i,mv)*ur fr(i,5) = ur*(qr(i,5) + p) c 210 continue c c # compute the leftgoing and rightgoing flux differences: do 220 m=1,meqn do 220 i = 2-mbc, mx+mbc amdq(i,m) = f0(i,m) - fr(i-1,m) apdq(i,m) = fl(i,m) - f0(i,m) 220 continue c return end c c double precision function phi(w) implicit double precision (a-h,o-z) common /param/ gamma,gamma1,q0 c sqg = dsqrt(gamma) if (w .gt. 1.) then phi = dsqrt(w*(gamma+1.)/2. + gamma1/2.) else if (w .gt. 0.99999) then phi = sqg else if (w .gt. .999) then phi = sqg + (2*gamma**2 - 3.*gamma + 1) & *(w-1.) / (4.*sqg) else phi = gamma1*(1.-w) / (2.*sqg*(1.-w**(gamma1/(2.*gamma)))) endif return end