• VTF
  • FSI
  • AMROC
  • SFC
  • Motion
  • STLIB
  • Main Page
  • src/2d/equations/euler/rp/rpn2euhllg.f

    c
    c
    c     =====================================================
          subroutine rpn2eu(ixy,maxm,meqn,mwaves,mbc,mx,ql,qr,maux,
         &     auxl,auxr,wave,s,amdq,apdq)
    c     =====================================================
    c
    c     # Hybrid Roe-solver for the Euler equations 
    c     # solve Riemann problems along one slice of data.
    c     # Scheme is blended with HLL for robustness.
    c
    c     # On input, ql contains the state vector at the left edge of each cell
    c     #           qr contains the state vector at the right edge of each cell
    c
    c     # This data is along a slice in the x-direction if ixy=1 
    c     #                            or the y-direction if ixy=2.
    c     # On output, wave contains the waves, s the speeds, 
    c     # amdq and apdq the positive and negative flux.
    c
    c     # Note that the i'th Riemann problem has left state qr(i-1,:)
    c     #                                    and right state ql(i,:)
    c     # From the basic routines, this routine is called with ql = qr
    c
    c     # Author: Ralf Deiterding
    c
          implicit double precision (a-h,o-z)
          dimension wave(1-mbc:maxm+mbc, meqn, mwaves)
          dimension    s(1-mbc:maxm+mbc, mwaves)
          dimension   ql(1-mbc:maxm+mbc, meqn)
          dimension   qr(1-mbc:maxm+mbc, meqn)
          dimension auxl(1-mbc:maxm+mbc, maux)
          dimension auxr(1-mbc:maxm+mbc, maux)
          dimension apdq(1-mbc:maxm+mbc, meqn)
          dimension amdq(1-mbc:maxm+mbc, meqn)
    c
    c     local arrays -- common block comroe is passed to rpt2eu
    c     ------------
          parameter (maxm2 = 10005)  !# assumes at most 10000x10000 grid with mbc=5
          parameter (minm2 = -4)     !# assumes at most mbc=5
          dimension delta(4), fl(minm2:maxm2,4), fr(minm2:maxm2,4)
          logical efix, hll, roe, hllfix
          common /param/  gamma,gamma1
          common /comroe/ u2v2(minm2:maxm2),
         &       u(minm2:maxm2),v(minm2:maxm2),enth(minm2:maxm2),
         &       a(minm2:maxm2),g1a2(minm2:maxm2),euv(minm2:maxm2) 
    c
          data efix /.true./   !# use entropy fix
          data hll  /.true./   !# use HLL instead of Roe solver, if unphysical values occur
          data roe  /.true./   !# turn off Roe solver when debugging HLL
    c
    c
    c     # Riemann solver returns fluxes
    c     ------------
          common /rpnflx/ mrpnflx
          mrpnflx = 1
    c
          if (minm2.gt.1-mbc .or. maxm2 .lt. maxm+mbc) then
    	 write(6,*) 'need to increase maxm2 in rpA'
    	 stop
    	 endif
    c
    c     # set mu to point to  the component of the system that corresponds
    c     # to momentum in the direction of this slice, mv to the orthogonal
    c     # momentum:
    c
          if (ixy.eq.1) then
    	  mu = 2
    	  mv = 3
    	else
    	  mu = 3
    	  mv = 2
    	endif
    c
    c     # note that notation for u and v reflects assumption that the 
    c     # Riemann problems are in the x-direction with u in the normal
    c     # direciton and v in the orthogonal direcion, but with the above
    c     # definitions of mu and mv the routine also works with ixy=2
    c     # and returns, for example, f0 as the Godunov flux g0 for the
    c     # Riemann problems u_t + g(u)_y = 0 in the y-direction.
    c
    c
    c     # compute the Roe-averaged variables needed in the Roe solver.
    c     # These are stored in the common block comroe since they are
    c     # later used in routine rpt2eu to do the transverse wave splitting.
    c
          do 10 i = 2-mbc, mx+mbc
             rhsqrtl = dsqrt(qr(i-1,1))
             rhsqrtr = dsqrt(ql(i,1))
             pl = gamma1*(qr(i-1,4) - 0.5d0*(qr(i-1,2)**2 +
         &        qr(i-1,3)**2)/qr(i-1,1))
             pr = gamma1*(ql(i,4) - 0.5d0*(ql(i,2)**2 +
         &        ql(i,3)**2)/ql(i,1))
             rhsq2 = rhsqrtl + rhsqrtr
             u(i) = (qr(i-1,mu)/rhsqrtl + ql(i,mu)/rhsqrtr) / rhsq2
             v(i) = (qr(i-1,mv)/rhsqrtl + ql(i,mv)/rhsqrtr) / rhsq2
             enth(i) = (((qr(i-1,4)+pl)/rhsqrtl
         &             + (ql(i,4)+pr)/rhsqrtr)) / rhsq2
    	 u2v2(i) = u(i)**2 + v(i)**2
             a2 = gamma1*(enth(i) - .5d0*u2v2(i))
             a(i) = dsqrt(a2)
    	 g1a2(i) = gamma1 / a2
    	 euv(i) = enth(i) - u2v2(i) 
       10    continue
    c
    c
    c     # now split the jump in q at each interface into waves
    c
    c     # find a1 thru a4, the coefficients of the 4 eigenvectors:
          do 20 i = 2-mbc, mx+mbc
             delta(1) = ql(i,1) - qr(i-1,1)
             delta(2) = ql(i,mu) - qr(i-1,mu)
             delta(3) = ql(i,mv) - qr(i-1,mv)
             delta(4) = ql(i,4) - qr(i-1,4)
             a3 = g1a2(i) * (euv(i)*delta(1) 
         &      + u(i)*delta(2) + v(i)*delta(3) - delta(4))
             a2 = delta(3) - v(i)*delta(1)
             a4 = (delta(2) + (a(i)-u(i))*delta(1) - a(i)*a3) / (2.d0*a(i))
             a1 = delta(1) - a3 - a4
    c
    c        # Compute the waves.
    c        # Note that the 2-wave and 3-wave travel at the same speed and 
    c        # are lumped together in wave(.,.,2).  The 4-wave is then stored in
    c        # wave(.,.,3).
    c
             wave(i,1,1) = a1
             wave(i,mu,1) = a1*(u(i)-a(i))
             wave(i,mv,1) = a1*v(i)
             wave(i,4,1) = a1*(enth(i) - u(i)*a(i))
             s(i,1) = u(i)-a(i)
    c
             wave(i,1,2) = a3
             wave(i,mu,2) = a3*u(i)
             wave(i,mv,2) = a3*v(i)	 	 + a2
             wave(i,4,2) = a3*0.5d0*u2v2(i)  + a2*v(i)
             s(i,2) = u(i)
    c
             wave(i,1,3) = a4
             wave(i,mu,3) = a4*(u(i)+a(i))
             wave(i,mv,3) = a4*v(i)
             wave(i,4,3) = a4*(enth(i)+u(i)*a(i))
             s(i,3) = u(i)+a(i)
       20    continue
    c
          call flx2(ixy,maxm,meqn,mbc,mx,qr,maux,auxr,apdq)
          call flx2(ixy,maxm,meqn,mbc,mx,ql,maux,auxl,amdq)
    c
          do 35 i = 1-mbc, mx+mbc
             do 35 m=1,meqn
                fl(i,m) = amdq(i,m)
                fr(i,m) = apdq(i,m)
     35   continue  
    c
          if (.not.roe) go to 900
    c    
    c    # compute flux differences amdq and apdq.
    c    ---------------------------------------
    c
          if (efix) go to 110
    c
    c     # no entropy fix
    c     ----------------
    c
    c     # amdq = SUM s*wave   over left-going waves
    c
          do 100 m=1,meqn
             do 100 i=2-mbc, mx+mbc
    	    amdq(i,m) = 0.d0
    	    do 90 mw=1,mwaves
    	       if (s(i,mw) .lt. 0.d0) then
                      amdq(i,m) = amdq(i,m) + s(i,mw)*wave(i,m,mw)
                   endif
     90         continue
     100  continue
          go to 900	    
    c
    c-----------------------------------------------------
    c
      110 continue
    c
    c     # With entropy fix
    c     ------------------
    c
    c    # compute flux differences amdq and apdq.
    c    # First compute amdq as sum of s*wave for left going waves.
    c    # Incorporate entropy fix by adding a modified fraction of wave
    c    # if s should change sign.
    c
          do 200 i = 2-mbc, mx+mbc
    c
    c        # check 1-wave:
    c        ---------------
    c
    	 rhoim1 = qr(i-1,1)
    	 pim1 = gamma1*(qr(i-1,4) - 0.5d0*(qr(i-1,mu)**2 
         &           + qr(i-1,mv)**2) / rhoim1)
             if ((rhoim1.le.0.d0.or.pim1.le.0.d0).and.hll) go to 200
    	 cim1 = dsqrt(gamma*pim1/rhoim1)
    	 s0 = qr(i-1,mu)/rhoim1 - cim1     !# u-c in left state (cell i-1)
    
    c        # check for fully supersonic case:
    	 if (s0.ge.0.d0 .and. s(i,1).gt.0.d0)  then
    c            # everything is right-going
    	     do 60 m=1,meqn
    		amdq(i,m) = 0.d0
       60           continue
    	     go to 200 
    	     endif
    c
             rho1 = qr(i-1,1) + wave(i,1,1)
             rhou1 = qr(i-1,mu) + wave(i,mu,1)
             rhov1 = qr(i-1,mv) + wave(i,mv,1)
             en1 = qr(i-1,4) + wave(i,4,1)
             p1 = gamma1*(en1 - 0.5d0*(rhou1**2 + rhov1**2)/rho1)
             if ((rho1.le.0.d0.or.p1.le.0.d0).and.hll) go to 200
             c1 = dsqrt(gamma*p1/rho1)
             s1 = rhou1/rho1 - c1  !# u-c to right of 1-wave
             if (s0.lt.0.d0 .and. s1.gt.0.d0) then
    c            # transonic rarefaction in the 1-wave
    	     sfract = s0 * (s1-s(i,1)) / (s1-s0)
    	   else if (s(i,1) .lt. 0.d0) then
    c	     # 1-wave is leftgoing
    	     sfract = s(i,1)
    	   else
    c	     # 1-wave is rightgoing
                 sfract = 0.d0   !# this shouldn't happen since s0 < 0
    	   endif
    	 do 120 m=1,meqn
    	    amdq(i,m) = sfract*wave(i,m,1)
      120       continue
    c
    c        # check 2-wave:
    c        ---------------
    c
             if (s(i,2) .ge. 0.d0) go to 200  !# 2- and 3- waves are rightgoing
    	 do 140 m=1,meqn
    	    amdq(i,m) = amdq(i,m) + s(i,2)*wave(i,m,2)
      140       continue
    c
    c        # check 3-wave:
    c        ---------------
    c
    	 rhoi = ql(i,1)
    	 pi = gamma1*(ql(i,4) - 0.5d0*(ql(i,mu)**2 
         &           + ql(i,mv)**2) / rhoi)
             if ((rhoi.le.0.d0.or.pi.le.0.d0).and.hll) go to 200
    	 ci = dsqrt(gamma*pi/rhoi)
    	 s3 = ql(i,mu)/rhoi + ci     !# u+c in right state  (cell i)
    c
             rho2 = ql(i,1) - wave(i,1,3)
             rhou2 = ql(i,mu) - wave(i,mu,3)
             rhov2 = ql(i,mv) - wave(i,mv,3)
             en2 = ql(i,4) - wave(i,4,3)
             p2 = gamma1*(en2 - 0.5d0*(rhou2**2 + rhov2**2)/rho2)
             if ((rho2.le.0.d0.or.p2.le.0.d0).and.hll) go to 200
             c2 = dsqrt(gamma*p2/rho2)
             s2 = rhou2/rho2 + c2   !# u+c to left of 3-wave
             if (s2 .lt. 0.d0 .and. s3.gt.0.d0) then
    c            # transonic rarefaction in the 3-wave
    	     sfract = s2 * (s3-s(i,3)) / (s3-s2)
    	   else if (s(i,3) .lt. 0.d0) then
    c            # 3-wave is leftgoing
    	     sfract = s(i,3)
    	   else 
    c            # 3-wave is rightgoing
    	     go to 200
    	   endif
    c
    	 do 160 m=1,meqn
    	    amdq(i,m) = amdq(i,m) + sfract*wave(i,m,3)
      160       continue
      200    continue
    c
      900 continue
    c
          if (hll) then
             do 350 i = 2-mbc, mx+mbc
                hllfix = .false.
                if (.not.roe) hllfix = .true.
    c     
                rhol  = qr(i-1,1)  + wave(i,1,1)
                rhoul = qr(i-1,mu) + wave(i,mu,1)
                rhovl = qr(i-1,mv) + wave(i,mv,1)
                El    = qr(i-1,4)  + wave(i,4,1)
                pl = gamma1*(El - 0.5d0*(rhoul**2 + rhovl**2)/rhol)
                if (rhol.le.0.d0.or.pl.le.0.d0) hllfix = .true.
    c     
                rhor  = ql(i,1)  - wave(i,1,3)
                rhour = ql(i,mu) - wave(i,mu,3)
                rhovr = ql(i,mv) - wave(i,mv,3)
                Er    = ql(i,4)  - wave(i,4,3)
                pr = gamma1*(Er - 0.5d0*(rhour**2 + rhovr**2)/rhor)
                if (rhor.le.0.d0.or.pr.le.0.d0) hllfix = .true.
    c     
                if (hllfix) then
    *               if (roe) write (6,*) 'Switching to HLL in',i
    c     
                   rl = qr(i-1,1)
                   ul = qr(i-1,mu)/rl
                   pl = gamma1*(qr(i-1,4) - 
         &              0.5d0*(qr(i-1,mu)**2+qr(i-1,mv)**2)/rl)
                   al = dsqrt(gamma*pl/rl)
    c     
                   rr = ql(i  ,1)
                   ur = ql(i  ,mu)/rr
                   pr = gamma1*(ql(i  ,4) -
         &              0.5d0*(ql(i  ,mu)**2+ql(i  ,mv)**2)/rr)
                   ar = dsqrt(gamma*pr/rr)
    c     
                   sl = dmin1(ul-al,ur-ar)
                   sr = dmax1(ul+al,ur+ar)
    c
                   do m=1,meqn
                      if (sl.ge.0.d0) fg = fr(i-1,m)
                      if (sr.le.0.d0) fg = fl(i,m)
                      if (sl.lt.0.d0.and.sr.gt.0.d0) 
         &                 fg = (sr*fr(i-1,m) - sl*fl(i,m) + 
         &                 sl*sr*(ql(i,m)-qr(i-1,m)))/ (sr-sl)
                      amdq(i,m) =   fg-fr(i-1,m)
                   enddo
                   s(i,1) = sl
                   s(i,2) = 0.d0
                   s(i,3) = sr
                endif     
     350     continue
          endif
    c
          do 300 i = 2-mbc, mx+mbc
             do 300 m=1,meqn
                amdq(i,m) = fr(i-1,m) + amdq(i,m) 
                apdq(i,m) = -amdq(i,m) 
     300  continue
    c
          return
          end
    c
    

<