c c c ===================================================== subroutine rpn2eu(ixy,maxm,meqn,mwaves,mbc,mx,ql,qr,maux, & auxl,auxr,wave,s,fl,fr) c ===================================================== c c # Riemann solver for the Euler equations c # The waves are computed using the Roe approximation. c c # This is quite a bit slower than the Roe solver, but may give c # more accurate solutions for some problems. c c # On input, ql contains the state vector at the left edge of each cell c # qr contains the state vector at the right edge of each cell c c # This data is along a slice in the x-direction if ixy=1 c # or the y-direction if ixy=2. c # On output, wave contains the waves, s the speeds c # and fl, fr the positive and negative Godunov flux. c c # Note that the i'th Riemann problem has left state qr(i-1,:) c # and right state ql(i,:) c # From the basic routines, this routine is called with ql = qr c c Author: Randall J. LeVeque c implicit double precision (a-h,o-z) dimension wave(1-mbc:maxm+mbc, meqn, mwaves) dimension s(1-mbc:maxm+mbc, mwaves) dimension ql(1-mbc:maxm+mbc, meqn) dimension qr(1-mbc:maxm+mbc, meqn) dimension auxl(1-mbc:maxm+mbc, maux) dimension auxr(1-mbc:maxm+mbc, maux) dimension fr(1-mbc:maxm+mbc, meqn) dimension fl(1-mbc:maxm+mbc, meqn) c c local arrays -- common block comroe is passed to rp2Beu c ------------ parameter (maxm2 = 10005) !# assumes at most 10000x10000 grid with mbc=5 parameter (minm2 = -4) !# assumes at most mbc=5 dimension delta(4) dimension sl(2),sr(2) common /param/ gamma,gamma1 common /comroe/ u2v2(minm2:maxm2), & u(minm2:maxm2),v(minm2:maxm2),enth(minm2:maxm2), & a(minm2:maxm2),g1a2(minm2:maxm2),euv(minm2:maxm2) c c # Riemann solver returns flux differences c ------------ common /rpnflx/ mrpnflx mrpnflx = 1 c if (minm2.gt.1-mbc .or. maxm2 .lt. maxm+mbc) then write(6,*) 'need to increase maxm2 in rpA' stop endif c c # set mu to point to the component of the system that corresponds c # to momentum in the direction of this slice, mv to the orthogonal c # momentum: c if (ixy.eq.1) then mu = 2 mv = 3 else mu = 3 mv = 2 endif c c # note that notation for u and v reflects assumption that the c # Riemann problems are in the x-direction with u in the normal c # direciton and v in the orthogonal direcion, but with the above c # definitions of mu and mv the routine also works with ixy=2 c # and returns, for example, fl as the Godunov flux gl for the c # Riemann problems u_t + g(u)_y = 0 in the y-direction. c c c # compute the Roe-averaged variables needed in the Roe solver. c # These are stored in the common block comroe since they are c # later used in routine rp2Beu to do the transverse wave splitting. c do 10 i = 2-mbc, mx+mbc rhsqrtl = dsqrt(qr(i-1,1)) rhsqrtr = dsqrt(ql(i,1)) pl = gamma1*(qr(i-1,4) - 0.5d0*(qr(i-1,2)**2 + & qr(i-1,3)**2)/qr(i-1,1)) pr = gamma1*(ql(i,4) - 0.5d0*(ql(i,2)**2 + & ql(i,3)**2)/ql(i,1)) rhsq2 = rhsqrtl + rhsqrtr u(i) = (qr(i-1,mu)/rhsqrtl + ql(i,mu)/rhsqrtr) / rhsq2 v(i) = (qr(i-1,mv)/rhsqrtl + ql(i,mv)/rhsqrtr) / rhsq2 enth(i) = (((qr(i-1,4)+pl)/rhsqrtl & + (ql(i,4)+pr)/rhsqrtr)) / rhsq2 u2v2(i) = u(i)**2 + v(i)**2 a2 = gamma1*(enth(i) - .5d0*u2v2(i)) a(i) = dsqrt(a2) g1a2(i) = gamma1 / a2 euv(i) = enth(i) - u2v2(i) 10 continue c c c # now split the jump in q at each interface into waves c c # find a1 thru a4, the coefficients of the 4 eigenvectors: do 20 i = 2-mbc, mx+mbc delta(1) = ql(i,1) - qr(i-1,1) delta(2) = ql(i,mu) - qr(i-1,mu) delta(3) = ql(i,mv) - qr(i-1,mv) delta(4) = ql(i,4) - qr(i-1,4) a3 = g1a2(i) * (euv(i)*delta(1) & + u(i)*delta(2) + v(i)*delta(3) - delta(4)) a2 = delta(3) - v(i)*delta(1) a4 = (delta(2) + (a(i)-u(i))*delta(1) - a(i)*a3) / (2.d0*a(i)) a1 = delta(1) - a3 - a4 c c # Compute the waves. c # Note that the 2-wave and 3-wave travel at the same speed and c # are lumped together in wave(.,.,2). The 4-wave is then stored in c # wave(.,.,3). c wave(i,1,1) = a1 wave(i,mu,1) = a1*(u(i)-a(i)) wave(i,mv,1) = a1*v(i) wave(i,4,1) = a1*(enth(i) - u(i)*a(i)) s(i,1) = u(i)-a(i) c wave(i,1,2) = a3 wave(i,mu,2) = a3*u(i) wave(i,mv,2) = a3*v(i) + a2 wave(i,4,2) = a3*0.5d0*u2v2(i) + a2*v(i) s(i,2) = u(i) c wave(i,1,3) = a4 wave(i,mu,3) = a4*(u(i)+a(i)) wave(i,mv,3) = a4*v(i) wave(i,4,3) = a4*(enth(i)+u(i)*a(i)) s(i,3) = u(i)+a(i) 20 continue c c c c # compute Godunov flux fl, fr at each interface. c # Uses exact Riemann solver c c do 200 i = 2-mbc, mx+mbc rhol = qr(i-1,1) rhor = ql(i,1) ul = qr(i-1,mu)/rhol ur = ql(i,mu)/rhor vl = qr(i-1,mv)/rhol vr = ql(i,mv)/rhor pl = gamma1*(qr(i-1,4)-0.5*(qr(i-1,mu)*ul + qr(i-1,mv)*vl)) pr = gamma1*(ql(i,4)-0.5*(ql(i,mu)*ur + ql(i,mv)*vr)) c c # iterate to find pstar, ustar: c alpha = 1. pstar = 0.5*(pl+pr) wr = dsqrt(pr*rhor) * phi(pstar/pr) wl = dsqrt(pl*rhol) * phi(pstar/pl) c if (pl.eq.pr .and. rhol.eq.rhor) go to 60 c 40 do 50 iter=1,100 p1 = (ul-ur+pr/wr+pl/wl) / (1./wr + 1./wl) pstar = dmax1(p1,1d-6)*alpha + (1.-alpha)*pstar wr1 = wr wl1 = wl wr = dsqrt(pr*rhor) * phi(pstar/pr) wl = dsqrt(pl*rhol) * phi(pstar/pl) if (dmax1(abs(wr1-wr),dabs(wl1-wl)) .lt. 1d-6) & go to 60 50 continue c c # nonconvergence: alpha = alpha/2. if (alpha .gt. 0.1) go to 40 write(6,*) 'no convergence',wr1,wr,wl1,wl wr = .5*(wr+wr1) wl = .5*(wl+wl1) c 60 continue ustar = (pl-pr+wr*ur+wl*ul) / (wr+wl) c c c # left wave: c ============ c if (pstar .gt. pl) then c c # shock: sl(1) = ul - wl/rhol sr(1) = sl(1) rho1 = wl/(ustar-sl(1)) c else c c # rarefaction: cl = dsqrt(gamma*pl/rhol) cstar = cl + 0.5*gamma1*(ul-ustar) sl(1) = ul-cl sr(1) = ustar-cstar rho1 = (pstar/pl)**(1./gamma) * rhol endif c c c c # right wave: c ============= c if (pstar .ge. pr) then c c # shock sl(2) = ur + wr/rhor sr(2) = sl(2) rho2 = wr/(sl(2)-ustar) c else c c # rarefaction: cr = dsqrt(gamma*pr/rhor) cstar = cr + 0.5*gamma1*(ustar-ur) sr(2) = ur+cr sl(2) = ustar+cstar rho2 = (pstar/pr)**(1./gamma)*rhor endif c c c # compute flux: c =============== c c # compute state (rhos,us,ps) at x/t = 0: c if (sl(1).gt.0) then rhos = rhol us = ul vs = vl ps = pl else if (sr(1).le.0. .and. ustar.ge. 0.) then rhos = rho1 us = ustar vs = vl ps = pstar else if (ustar.lt.0. .and. sl(2).ge. 0.) then rhos = rho2 us = ustar vs = vr ps = pstar else if (sr(2).lt.0) then rhos = rhor us = ur vs = vr ps = pr else if (sl(1).le.0. .and. sr(1).ge.0.) then c # transonic 1-rarefaction us = (gamma1*ul + 2.*cl)/(gamma+1.) e0 = pl/(rhol**gamma) rhos = (us**2/(gamma*e0))**(1./gamma1) ps = e0*rhos**gamma vs = vl else if (sl(2).le.0. .and. sr(2).ge.0.) then c # transonic 3-rarefaction us = (gamma1*ur - 2.*cr)/(gamma+1.) e0 = pr/(rhor**gamma) rhos = (us**2/(gamma*e0))**(1./gamma1) ps = e0*rhos**gamma vs = vr endif c fl(i,1) = rhos*us fl(i,mu) = rhos*us**2 + ps fl(i,mv) = rhos*us*vs fl(i,4) = us*(gamma*ps/gamma1 + 0.5*rhos*(us**2 + vs**2)) 200 continue c do 220 m=1,4 do 220 i = 2-mbc, mx+mbc fr(i,m) = -fl(i,m) 220 continue c return end c c c double precision function phi(w) implicit double precision (a-h,o-z) common/param/ gamma,gamma1 c sqg = dsqrt(gamma) if (w .gt. 1.) then phi = dsqrt(w*(gamma+1.)/2. + gamma1/2.) else if (w .gt. 0.99999) then phi = sqg else if (w .gt. .999) then phi = sqg + (2*gamma**2 - 3.*gamma + 1) & *(w-1.) / (4.*sqg) else phi = gamma1*(1.-w) / (2.*sqg*(1.-w**(gamma1/(2.*gamma)))) endif return end