• VTF
  • FSI
  • AMROC
  • SFC
  • Motion
  • STLIB
  • Main Page
  • src/2d/equations/euler/rp/rpn2euexactg.f

    c
    c
    c     =====================================================
          subroutine rpn2eu(ixy,maxm,meqn,mwaves,mbc,mx,ql,qr,maux,
         &     auxl,auxr,wave,s,fl,fr)
    c     =====================================================
    c
    c     # Riemann solver for the Euler equations
    c     # The waves are computed using the Roe approximation.
    c   
    c     # This is quite a bit slower than the Roe solver, but may give 
    c     # more accurate solutions for some problems.
    c
    c     # On input, ql contains the state vector at the left edge of each cell
    c     #           qr contains the state vector at the right edge of each cell
    c
    c     # This data is along a slice in the x-direction if ixy=1
    c     #                            or the y-direction if ixy=2.
    c     # On output, wave contains the waves, s the speeds  
    c     # and fl, fr the positive and negative Godunov flux.
    c
    c     # Note that the i'th Riemann problem has left state qr(i-1,:)
    c     #                                    and right state ql(i,:)
    c     # From the basic routines, this routine is called with ql = qr
    c
    c     Author:  Randall J. LeVeque
    c
          implicit double precision (a-h,o-z)
          dimension wave(1-mbc:maxm+mbc, meqn, mwaves)
          dimension    s(1-mbc:maxm+mbc, mwaves)
          dimension   ql(1-mbc:maxm+mbc, meqn)
          dimension   qr(1-mbc:maxm+mbc, meqn)
          dimension auxl(1-mbc:maxm+mbc, maux)
          dimension auxr(1-mbc:maxm+mbc, maux)
          dimension   fr(1-mbc:maxm+mbc, meqn)
          dimension   fl(1-mbc:maxm+mbc, meqn)
    c
    c     local arrays -- common block comroe is passed to rp2Beu
    c     ------------
          parameter (maxm2 = 10005)   !# assumes at most 10000x10000 grid with mbc=5
          parameter (minm2 = -4)     !# assumes at most mbc=5
          dimension delta(4)
          dimension sl(2),sr(2)
          common /param/  gamma,gamma1
          common /comroe/ u2v2(minm2:maxm2),
         &       u(minm2:maxm2),v(minm2:maxm2),enth(minm2:maxm2),
         &       a(minm2:maxm2),g1a2(minm2:maxm2),euv(minm2:maxm2) 
    c
    c     # Riemann solver returns flux differences
    c     ------------
          common /rpnflx/ mrpnflx
          mrpnflx = 1
    c
          if (minm2.gt.1-mbc .or. maxm2 .lt. maxm+mbc) then
    	 write(6,*) 'need to increase maxm2 in rpA'
    	 stop
    	 endif
    c
    c     # set mu to point to  the component of the system that corresponds
    c     # to momentum in the direction of this slice, mv to the orthogonal
    c     # momentum:
    c
          if (ixy.eq.1) then
    	  mu = 2
    	  mv = 3
    	else
    	  mu = 3
    	  mv = 2
    	endif
    c
    c     # note that notation for u and v reflects assumption that the 
    c     # Riemann problems are in the x-direction with u in the normal
    c     # direciton and v in the orthogonal direcion, but with the above
    c     # definitions of mu and mv the routine also works with ixy=2
    c     # and returns, for example, fl as the Godunov flux gl for the
    c     # Riemann problems u_t + g(u)_y = 0 in the y-direction.
    c
    c
    c     # compute the Roe-averaged variables needed in the Roe solver.
    c     # These are stored in the common block comroe since they are
    c     # later used in routine rp2Beu to do the transverse wave splitting.
    c
          do 10 i = 2-mbc, mx+mbc
             rhsqrtl = dsqrt(qr(i-1,1))
             rhsqrtr = dsqrt(ql(i,1))
             pl = gamma1*(qr(i-1,4) - 0.5d0*(qr(i-1,2)**2 +
         &        qr(i-1,3)**2)/qr(i-1,1))
             pr = gamma1*(ql(i,4) - 0.5d0*(ql(i,2)**2 +
         &        ql(i,3)**2)/ql(i,1))
             rhsq2 = rhsqrtl + rhsqrtr
             u(i) = (qr(i-1,mu)/rhsqrtl + ql(i,mu)/rhsqrtr) / rhsq2
             v(i) = (qr(i-1,mv)/rhsqrtl + ql(i,mv)/rhsqrtr) / rhsq2
             enth(i) = (((qr(i-1,4)+pl)/rhsqrtl
         &             + (ql(i,4)+pr)/rhsqrtr)) / rhsq2
    	 u2v2(i) = u(i)**2 + v(i)**2
             a2 = gamma1*(enth(i) - .5d0*u2v2(i))
             a(i) = dsqrt(a2)
    	 g1a2(i) = gamma1 / a2
    	 euv(i) = enth(i) - u2v2(i) 
       10    continue
    c
    c
    c     # now split the jump in q at each interface into waves
    c
    c     # find a1 thru a4, the coefficients of the 4 eigenvectors:
          do 20 i = 2-mbc, mx+mbc
             delta(1) = ql(i,1) - qr(i-1,1)
             delta(2) = ql(i,mu) - qr(i-1,mu)
             delta(3) = ql(i,mv) - qr(i-1,mv)
             delta(4) = ql(i,4) - qr(i-1,4)
             a3 = g1a2(i) * (euv(i)*delta(1) 
         &      + u(i)*delta(2) + v(i)*delta(3) - delta(4))
             a2 = delta(3) - v(i)*delta(1)
             a4 = (delta(2) + (a(i)-u(i))*delta(1) - a(i)*a3) / (2.d0*a(i))
             a1 = delta(1) - a3 - a4
    c
    c        # Compute the waves.
    c        # Note that the 2-wave and 3-wave travel at the same speed and 
    c        # are lumped together in wave(.,.,2).  The 4-wave is then stored in
    c        # wave(.,.,3).
    c
             wave(i,1,1) = a1
             wave(i,mu,1) = a1*(u(i)-a(i))
             wave(i,mv,1) = a1*v(i)
             wave(i,4,1) = a1*(enth(i) - u(i)*a(i))
             s(i,1) = u(i)-a(i)
    c
             wave(i,1,2) = a3
             wave(i,mu,2) = a3*u(i)
             wave(i,mv,2) = a3*v(i)	 	 + a2
             wave(i,4,2) = a3*0.5d0*u2v2(i)  + a2*v(i)
             s(i,2) = u(i)
    c
             wave(i,1,3) = a4
             wave(i,mu,3) = a4*(u(i)+a(i))
             wave(i,mv,3) = a4*v(i)
             wave(i,4,3) = a4*(enth(i)+u(i)*a(i))
             s(i,3) = u(i)+a(i)
       20    continue
    c
    c
    c
    c     # compute Godunov flux fl, fr at each interface.  
    c     # Uses exact Riemann solver
    c
    c
          do 200 i = 2-mbc, mx+mbc
    	 rhol = qr(i-1,1)
    	 rhor = ql(i,1)
    	 ul = qr(i-1,mu)/rhol
    	 ur = ql(i,mu)/rhor
    	 vl = qr(i-1,mv)/rhol
    	 vr = ql(i,mv)/rhor
             pl = gamma1*(qr(i-1,4)-0.5*(qr(i-1,mu)*ul + qr(i-1,mv)*vl))
             pr = gamma1*(ql(i,4)-0.5*(ql(i,mu)*ur + ql(i,mv)*vr))
    c
    c        # iterate to find pstar, ustar:
    c
             alpha = 1.
             pstar = 0.5*(pl+pr)
             wr = dsqrt(pr*rhor) * phi(pstar/pr)
             wl = dsqrt(pl*rhol) * phi(pstar/pl)
    c        if (pl.eq.pr .and. rhol.eq.rhor) go to 60
    c
       40    do 50 iter=1,100
    	    p1 = (ul-ur+pr/wr+pl/wl) / (1./wr + 1./wl)
    	    pstar = dmax1(p1,1d-6)*alpha + (1.-alpha)*pstar
    	    wr1 = wr
    	    wl1 = wl
                wr = dsqrt(pr*rhor) * phi(pstar/pr)
                wl = dsqrt(pl*rhol) * phi(pstar/pl)
    	    if (dmax1(abs(wr1-wr),dabs(wl1-wl)) .lt. 1d-6)
         &	       go to 60
       50       continue
    c
    c        # nonconvergence:
             alpha = alpha/2.
             if (alpha .gt. 0.1) go to 40
       	    write(6,*) 'no convergence',wr1,wr,wl1,wl
    	    wr = .5*(wr+wr1)
    	    wl = .5*(wl+wl1)
    c
       60    continue
             ustar = (pl-pr+wr*ur+wl*ul) / (wr+wl)
    c
    c
    c        # left wave:
    c        ============
    c
             if (pstar .gt. pl) then
    c
    c            # shock:
                 sl(1) = ul - wl/rhol
                 sr(1) = sl(1)
                 rho1 = wl/(ustar-sl(1))
    c
    	   else
    c
    c            # rarefaction:
                 cl = dsqrt(gamma*pl/rhol)
                 cstar = cl + 0.5*gamma1*(ul-ustar)
                 sl(1) = ul-cl
                 sr(1) = ustar-cstar
                 rho1 = (pstar/pl)**(1./gamma) * rhol
    	   endif
    c
    c
    c
    c        # right wave:
    c        =============
    c
             if (pstar .ge. pr) then
    c
    c            # shock
                 sl(2) = ur + wr/rhor
                 sr(2) = sl(2)
                 rho2 = wr/(sl(2)-ustar)
    c
    	   else
    c
    c            # rarefaction:
                 cr = dsqrt(gamma*pr/rhor)
                 cstar = cr + 0.5*gamma1*(ustar-ur)
                 sr(2) = ur+cr
                 sl(2) = ustar+cstar
                 rho2 = (pstar/pr)**(1./gamma)*rhor
    	   endif
    c
    c
    c        # compute flux:
    c        ===============
    c
    c        # compute state (rhos,us,ps) at x/t = 0:
    c
             if (sl(1).gt.0) then
    	    rhos = rhol
    	    us = ul
    	    vs = vl
    	    ps = pl
             else if (sr(1).le.0. .and. ustar.ge. 0.) then
    	    rhos = rho1
    	    us = ustar
    	    vs = vl
    	    ps = pstar
             else if (ustar.lt.0. .and. sl(2).ge. 0.) then
    	    rhos = rho2
    	    us = ustar
    	    vs = vr
    	    ps = pstar
             else if (sr(2).lt.0) then
    	    rhos = rhor
    	    us = ur
    	    vs = vr
    	    ps = pr
             else if (sl(1).le.0. .and. sr(1).ge.0.) then
    c           # transonic 1-rarefaction 
                us = (gamma1*ul + 2.*cl)/(gamma+1.)
       	    e0 = pl/(rhol**gamma)
    	    rhos = (us**2/(gamma*e0))**(1./gamma1)
    	    ps = e0*rhos**gamma
    	    vs = vl
             else if (sl(2).le.0. .and. sr(2).ge.0.) then
    c           # transonic 3-rarefaction 
                us = (gamma1*ur - 2.*cr)/(gamma+1.)
    	    e0 = pr/(rhor**gamma)
    	    rhos = (us**2/(gamma*e0))**(1./gamma1)
    	    ps = e0*rhos**gamma
    	    vs = vr
             endif
    c
             fl(i,1) = rhos*us
             fl(i,mu) = rhos*us**2 + ps
             fl(i,mv) = rhos*us*vs  
             fl(i,4) = us*(gamma*ps/gamma1 + 0.5*rhos*(us**2 + vs**2))
     200  continue
    c
          do 220 m=1,4
             do 220 i = 2-mbc, mx+mbc
    	    fr(i,m) = -fl(i,m)
     220  continue
    c     
          return
          end
    c
    c
    c
          double precision function phi(w)
          implicit double precision (a-h,o-z)
          common/param/ gamma,gamma1
    c
          sqg = dsqrt(gamma)
          if (w .gt. 1.) then
              phi = dsqrt(w*(gamma+1.)/2. + gamma1/2.)
            else if (w .gt. 0.99999) then
    	  phi = sqg
    	else if (w .gt. .999) then
    	  phi = sqg + (2*gamma**2 - 3.*gamma + 1)
         &          *(w-1.) / (4.*sqg)
    	else
              phi = gamma1*(1.-w) / (2.*sqg*(1.-w**(gamma1/(2.*gamma))))
    	endif
          return
          end
    

<