• VTF
  • FSI
  • AMROC
  • SFC
  • Motion
  • STLIB
  • Main Page
  • src/2d/equations/euler/rp/rpn2eu.f

    
    c
    c
    c     =====================================================
          subroutine rpn2eu(ixy,maxm,meqn,mwaves,mbc,mx,ql,qr,maux,
         &                  auxl,auxr,wave,s,amdq,apdq)
    c     =====================================================
    c
    c     # Roe-solver for the Euler equations
    c     # solve Riemann problems along one slice of data.
    c
    c     # On input, ql contains the state vector at the left edge of each cell
    c     #           qr contains the state vector at the right edge of each cell
    c
    c     # This data is along a slice in the x-direction if ixy=1 
    c     #                            or the y-direction if ixy=2.
    c     # On output, wave contains the waves, s the speeds, 
    c     # and amdq, apdq the decomposition of the flux difference
    c     #   f(qr(i-1)) - f(ql(i))  
    c     # into leftgoing and rightgoing parts respectively.
    c     # With the Roe solver we have   
    c     #    amdq  =  A^- \Delta q    and    apdq  =  A^+ \Delta q
    c     # where A is the Roe matrix.  An entropy fix can also be incorporated
    c     # into the flux differences.
    c
    c     # Note that the i'th Riemann problem has left state qr(i-1,:)
    c     #                                    and right state ql(i,:)
    c     # From the basic routines, this routine is called with ql = qr
    c
    c     Author:  Randall J. LeVeque
    c
          implicit double precision (a-h,o-z)
          dimension wave(1-mbc:maxm+mbc, meqn, mwaves)
          dimension    s(1-mbc:maxm+mbc, mwaves)
          dimension   ql(1-mbc:maxm+mbc, meqn)
          dimension   qr(1-mbc:maxm+mbc, meqn)
          dimension  apdq(1-mbc:maxm+mbc, meqn)
          dimension  amdq(1-mbc:maxm+mbc, meqn)
    c
    c     local arrays -- common block comroe is passed to rpt2eu
    c     ------------
          parameter (maxm2 = 10005)  !# assumes at most 10000x10000 grid with mbc=5
          parameter (minm2 = -4)     !# assumes at most mbc=5
          dimension delta(4)
          logical efix
          common /param/  gamma,gamma1
          common /comroe/ u2v2(minm2:maxm2),
         &                u(minm2:maxm2),v(minm2:maxm2),enth(minm2:maxm2),
         &                a(minm2:maxm2),g1a2(minm2:maxm2),euv(minm2:maxm2) 
    c
          data efix /.true./    !# use entropy fix for transonic rarefactions
    c
    c     # Riemann solver returns flux differences
    c     ------------
          common /rpnflx/ mrpnflx
          mrpnflx = 0
    c
          if (minm2.gt.1-mbc .or. maxm2.lt.maxm+mbc) then
             write(6,*) 'need to increase maxm2 in rpA'
             stop
          endif
    c
    c     # set mu to point to  the component of the system that corresponds
    c     # to momentum in the direction of this slice, mv to the orthogonal
    c     # momentum:
    c
          if (ixy.eq.1) then
             mu = 2
             mv = 3
          else
             mu = 3
             mv = 2
          endif
    c
    c     # note that notation for u and v reflects assumption that the 
    c     # Riemann problems are in the x-direction with u in the normal
    c     # direciton and v in the orthogonal direcion, but with the above
    c     # definitions of mu and mv the routine also works with ixy=2
    c     # and returns, for example, f0 as the Godunov flux g0 for the
    c     # Riemann problems u_t + g(u)_y = 0 in the y-direction.
    c
    c
    c     # compute the Roe-averaged variables needed in the Roe solver.
    c     # These are stored in the common block comroe since they are
    c     # later used in routine rpt2eu to do the transverse wave splitting.
    c
          do 10 i = 2-mbc, mx+mbc
             rhsqrtl = dsqrt(qr(i-1,1))
             rhsqrtr = dsqrt(ql(i,1))
             pl = gamma1*(qr(i-1,4) - 0.5d0*(qr(i-1,2)**2 +
         &        qr(i-1,3)**2)/qr(i-1,1))
             pr = gamma1*(ql(i,4) - 0.5d0*(ql(i,2)**2 +
         &        ql(i,3)**2)/ql(i,1))
             rhsq2 = rhsqrtl + rhsqrtr
             u(i) = (qr(i-1,mu)/rhsqrtl + ql(i,mu)/rhsqrtr) / rhsq2
             v(i) = (qr(i-1,mv)/rhsqrtl + ql(i,mv)/rhsqrtr) / rhsq2
             enth(i) = (((qr(i-1,4)+pl)/rhsqrtl
         &             + (ql(i,4)+pr)/rhsqrtr)) / rhsq2
             u2v2(i) = u(i)**2 + v(i)**2
             a2 = gamma1*(enth(i) - .5d0*u2v2(i))
             a(i) = dsqrt(a2)
             g1a2(i) = gamma1 / a2
             euv(i) = enth(i) - u2v2(i) 
       10 continue
    c
    c
    c     # now split the jump in q at each interface into waves
    c
    c     # find a1 thru a4, the coefficients of the 4 eigenvectors:
          do 20 i = 2-mbc, mx+mbc
             delta(1) = ql(i,1) - qr(i-1,1)
             delta(2) = ql(i,mu) - qr(i-1,mu)
             delta(3) = ql(i,mv) - qr(i-1,mv)
             delta(4) = ql(i,4) - qr(i-1,4)
             a3 = g1a2(i) * (euv(i)*delta(1) 
         &      + u(i)*delta(2) + v(i)*delta(3) - delta(4))
             a2 = delta(3) - v(i)*delta(1)
             a4 = (delta(2) + (a(i)-u(i))*delta(1) - a(i)*a3) / (2.d0*a(i))
             a1 = delta(1) - a3 - a4
    c
    c        # Compute the waves.
    c        # Note that the 2-wave and 3-wave travel at the same speed and 
    c        # are lumped together in wave(.,.,2).  The 4-wave is then stored in
    c        # wave(.,.,3).
    c
             wave(i,1,1) = a1
             wave(i,mu,1) = a1*(u(i)-a(i))
             wave(i,mv,1) = a1*v(i)
             wave(i,4,1) = a1*(enth(i) - u(i)*a(i))
             s(i,1) = u(i)-a(i)
    c
             wave(i,1,2) = a3
             wave(i,mu,2) = a3*u(i)
             wave(i,mv,2) = a3*v(i)          + a2
             wave(i,4,2) = a3*0.5d0*u2v2(i)  + a2*v(i)
             s(i,2) = u(i)
    c
             wave(i,1,3) = a4
             wave(i,mu,3) = a4*(u(i)+a(i))
             wave(i,mv,3) = a4*v(i)
             wave(i,4,3) = a4*(enth(i)+u(i)*a(i))
             s(i,3) = u(i)+a(i)
       20 continue
    c
    c
    c     # compute flux differences amdq and apdq.
    c     ---------------------------------------
    c
          if (efix) go to 110
    c
    c     # no entropy fix
    c     ----------------
    c
    c     # amdq = SUM s*wave   over left-going waves
    c     # apdq = SUM s*wave   over right-going waves
    c
          do 100 m=1,4
             do 100 i=2-mbc, mx+mbc
                amdq(i,m) = 0.d0
                apdq(i,m) = 0.d0
                do 90 mw=1,mwaves
                   if (s(i,mw) .lt. 0.d0) then
                      amdq(i,m) = amdq(i,m) + s(i,mw)*wave(i,m,mw)
                   else
                      apdq(i,m) = apdq(i,m) + s(i,mw)*wave(i,m,mw)
                   endif
       90       continue
      100 continue
          go to 900     
    c
    c-----------------------------------------------------
    c
      110 continue
    c
    c     # With entropy fix
    c     ------------------
    c
    c     # compute flux differences amdq and apdq.
    c     # First compute amdq as sum of s*wave for left going waves.
    c     # Incorporate entropy fix by adding a modified fraction of wave
    c     # if s should change sign.
    c
          do 200 i = 2-mbc, mx+mbc
    c
    c        # check 1-wave:
    c        ---------------
    c
             rhoim1 = qr(i-1,1)
             pim1 = gamma1*(qr(i-1,4) - 0.5d0*(qr(i-1,mu)**2 
         &           + qr(i-1,mv)**2) / rhoim1)
             cim1 = dsqrt(gamma*pim1/rhoim1)
             s0 = qr(i-1,mu)/rhoim1 - cim1     !# u-c in left state (cell i-1)
    
    c        # check for fully supersonic case:
             if (s0.ge.0.d0 .and. s(i,1).gt.0.d0)  then
    c           # everything is right-going
                do 60 m=1,4
                   amdq(i,m) = 0.d0
       60       continue
                go to 200 
             endif
    c
             rho1 = qr(i-1,1) + wave(i,1,1)
             rhou1 = qr(i-1,mu) + wave(i,mu,1)
             rhov1 = qr(i-1,mv) + wave(i,mv,1)
             en1 = qr(i-1,4) + wave(i,4,1)
             p1 = gamma1*(en1 - 0.5d0*(rhou1**2 + rhov1**2)/rho1)
             c1 = dsqrt(gamma*p1/rho1)
             s1 = rhou1/rho1 - c1  !# u-c to right of 1-wave
             if (s0.lt.0.d0 .and. s1.gt.0.d0) then
    c           # transonic rarefaction in the 1-wave
                sfract = s0 * (s1-s(i,1)) / (s1-s0)
             else if (s(i,1) .lt. 0.d0) then
    c           # 1-wave is leftgoing
                sfract = s(i,1)
             else
    c           # 1-wave is rightgoing
                sfract = 0.d0   !# this shouldn't happen since s0 < 0
             endif
             do 120 m=1,4
                amdq(i,m) = sfract*wave(i,m,1)
      120    continue
    c
    c        # check 2-wave:
    c        ---------------
    c
             if (s(i,2) .ge. 0.d0) go to 200  !# 2- and 3- waves are rightgoing
             do 140 m=1,4
                amdq(i,m) = amdq(i,m) + s(i,2)*wave(i,m,2)
      140    continue
    c
    c        # check 3-wave:
    c        ---------------
    c
             rhoi = ql(i,1)
             pi = gamma1*(ql(i,4) - 0.5d0*(ql(i,mu)**2 
         &           + ql(i,mv)**2) / rhoi)
             ci = dsqrt(gamma*pi/rhoi)
             s3 = ql(i,mu)/rhoi + ci     !# u+c in right state  (cell i)
    c
             rho2 = ql(i,1) - wave(i,1,3)
             rhou2 = ql(i,mu) - wave(i,mu,3)
             rhov2 = ql(i,mv) - wave(i,mv,3)
             en2 = ql(i,4) - wave(i,4,3)
             p2 = gamma1*(en2 - 0.5d0*(rhou2**2 + rhov2**2)/rho2)
             c2 = dsqrt(gamma*p2/rho2)
             s2 = rhou2/rho2 + c2   !# u+c to left of 3-wave
             if (s2 .lt. 0.d0 .and. s3.gt.0.d0) then
    c           # transonic rarefaction in the 3-wave
                sfract = s2 * (s3-s(i,3)) / (s3-s2)
             else if (s(i,3) .lt. 0.d0) then
    c           # 3-wave is leftgoing
                sfract = s(i,3)
             else 
    c           # 3-wave is rightgoing
                go to 200
             endif
    c
             do 160 m=1,4
                amdq(i,m) = amdq(i,m) + sfract*wave(i,m,3)
      160    continue
      200 continue
    c
    c     # compute the rightgoing flux differences:
    c     # df = SUM s*wave   is the total flux difference and apdq = df - amdq
    c
          do 220 m=1,4
             do 220 i = 2-mbc, mx+mbc
                df = 0.d0
                do 210 mw=1,mwaves
                   df = df + s(i,mw)*wave(i,m,mw)
      210       continue
                apdq(i,m) = df - amdq(i,m)
      220 continue
    c
      900 continue
          return
          end
    

<