c c ========================================================= subroutine rp1euznd(maxmx,meqn,mwaves,mbc,mx,ql,qr,maux, & auxl,auxr,wave,s,amdq,apdq) c ========================================================= c c # solve Riemann problems for the 1D ZND-Euler equations using Roe's c # approximate Riemann solver. c c # On input, ql contains the state vector at the left edge of each cell c # qr contains the state vector at the right edge of each cell c # On output, wave contains the waves, c # s the speeds, c # amdq the left-going flux difference A^- \Delta q c # apdq the right-going flux difference A^+ \Delta q c c # Note that the i'th Riemann problem has left state qr(i-1,:) c # and right state ql(i,:) c # From the basic clawpack routine step1, rp is called with ql = qr = q. c c # Copyright (C) 2002 Ralf Deiterding c # Brandenburgische Universitaet Cottbus c implicit double precision (a-h,o-z) dimension ql(1-mbc:maxmx+mbc, meqn) dimension qr(1-mbc:maxmx+mbc, meqn) dimension s(1-mbc:maxmx+mbc, mwaves) dimension wave(1-mbc:maxmx+mbc, meqn, mwaves) dimension amdq(1-mbc:maxmx+mbc, meqn) dimension apdq(1-mbc:maxmx+mbc, meqn) c c # local storage c --------------- parameter (max2 = 100002) !# assumes at most 100000 grid points with mbc=2 dimension u(-1:max2), enth(-1:max2),a(-1:max2) dimension fr(-1:max2,4), fl(-1:max2,4) logical efix, pfix common /param/ gamma,gamma1,q0 c c define local arrays c dimension delta(4), Y(2,-1:max2) c data efix /.true./ !# use entropy fix for transonic rarefactions data pfix /.true./ !# use Larrouturou's positivity fix for species c c # Riemann solver returns fluxes c ------------ common /rpnflx/ mrpnflx mrpnflx = 1 c c # Compute Roe-averaged quantities: c do 20 i=2-mbc,mx+mbc c pl = gamma1*(qr(i-1,4) - qr(i-1,2)*q0 - & 0.5d0*qr(i-1,3)**2/(qr(i-1,1) + qr(i-1,2))) pr = gamma1*(ql(i, 4) - ql(i, 2)*q0 - & 0.5d0*ql(i, 3)**2/(ql(i, 1) + ql(i, 2))) rhsqrtl = dsqrt(qr(i-1,1) + qr(i-1,2)) rhsqrtr = dsqrt(ql(i, 1) + ql(i, 2)) rhsq2 = rhsqrtl + rhsqrtr u(i) = (qr(i-1,3)/rhsqrtl + ql(i,3)/rhsqrtr) / rhsq2 enth(i) = (((qr(i-1,4)+pl)/rhsqrtl & + (ql(i ,4)+pr)/rhsqrtr)) / rhsq2 Y(1,i) = (qr(i-1,1)/rhsqrtl + ql(i,1)/rhsqrtr) / rhsq2 Y(2,i) = (qr(i-1,2)/rhsqrtl + ql(i,2)/rhsqrtr) / rhsq2 c # speed of sound a2 = gamma1*(enth(i) - 0.5d0*u(i)**2 - Y(2,i)*q0) a(i) = dsqrt(a2) c 20 continue c do 30 i=2-mbc,mx+mbc c c # find a1 thru a3, the coefficients of the 4 eigenvectors: c do k = 1, 4 delta(k) = ql(i,k) - qr(i-1,k) enddo drho = delta(1) + delta(2) c a2 = gamma1/a(i)**2 * (drho*0.5d0*u(i)**2 - delta(2)*q0 & - u(i)*delta(3) + delta(4)) a3 = 0.5d0*( a2 - ( u(i)*drho - delta(3) )/a(i) ) a1 = a2 - a3 c c # Compute the waves. c c # 1-wave wave(i,1,1) = a1*Y(1,i) wave(i,2,1) = a1*Y(2,i) wave(i,3,1) = a1*(u(i)-a(i)) wave(i,4,1) = a1*(enth(i) - u(i)*a(i)) s(i,1) = u(i)-a(i) c c # 2-wave and 3-wave wave(i,1,2) = delta(1) - Y(1,i)*a2 wave(i,2,2) = delta(2) - Y(2,i)*a2 wave(i,3,2) = u(i)*(drho - a2) wave(i,4,2) = 0.5d0*u(i)**2*(drho - a2) + & q0*(delta(2) - Y(2,i)*a2) s(i,2) = u(i) c c # 4-wave wave(i,1,3) = a3*Y(1,i) wave(i,2,3) = a3*Y(2,i) wave(i,3,3) = a3*(u(i)+a(i)) wave(i,4,3) = a3*(enth(i)+u(i)*a(i)) s(i,3) = u(i)+a(i) c 30 continue c call flx1(maxmx,meqn,mbc,mx,qr,maux,auxr,apdq) call flx1(maxmx,meqn,mbc,mx,ql,maux,auxl,amdq) c do 35 i = 2-mbc, mx+mbc do 35 m=1,meqn fl(i,m) = amdq(i,m) fr(i,m) = apdq(i,m) 35 continue c c # compute Godunov flux f0: c -------------------------- c if (efix) go to 110 c c # no entropy fix c ---------------- c c # amdq = SUM s*wave over left-going waves c # apdq = SUM s*wave over right-going waves c do 100 m=1,meqn do 100 i=2-mbc, mx+mbc amdq(i,m) = 0.d0 apdq(i,m) = 0.d0 do 90 mw=1,mwaves if (s(i,mw) .lt. 0.d0) then amdq(i,m) = amdq(i,m) + s(i,mw)*wave(i,m,mw) else apdq(i,m) = apdq(i,m) + s(i,mw)*wave(i,m,mw) endif 90 continue 100 continue go to 900 110 continue c c # With entropy fix c ------------------ c c # compute flux differences amdq and apdq. c # First compute amdq as sum of s*wave for left going waves. c # Incorporate entropy fix by adding a modified fraction of wave c # if s should change sign. c do 200 i=2-mbc,mx+mbc c c # check 1-wave: c --------------- c rk1 = qr(i-1,1) rk2 = qr(i-1,2) rhou = qr(i-1,3) rhoE = qr(i-1,4) rho = rk1 + rk2 p = gamma1*(rhoE - rk2*q0 - 0.5d0*rhou**2/rho) c = dsqrt(gamma*p/rho) s0 = rhou/rho - c !# u-c in left state (cell i-1) * write(6,*) 'left state 0', a(i), c, T c c # check for fully supersonic case: if (s0.ge.0.d0 .and. s(i,1).gt.0.d0) then c # everything is right-going do 60 m=1,meqn amdq(i,m) = 0.d0 60 continue go to 200 endif c rk1 = rk1 + wave(i,1,1) rk2 = rk2 + wave(i,2,1) rhou = rhou + wave(i,3,1) rhoE = rhoE + wave(i,4,1) rho = rk1 + rk2 p = gamma1*(rhoE - rk2*q0 - 0.5d0*rhou**2/rho) c = dsqrt(gamma*p/rho) s1 = rhou/rho - c !# u-c to right of 1-wave * write(6,*) 'left state 1', a(i), c, T c if (s0.lt.0.d0 .and. s1.gt.0.d0) then c # transonic rarefaction in the 1-wave sfract = s0 * (s1-s(i,1)) / (s1-s0) else if (s(i,1) .lt. 0.d0) then c # 1-wave is leftgoing sfract = s(i,1) else c # 1-wave is rightgoing sfract = 0.d0 !# this shouldn't happen since s0 < 0 endif do 120 m=1,meqn amdq(i,m) = sfract*wave(i,m,1) 120 continue c c # check 2-wave: c --------------- c if (s(i,2) .ge. 0.d0) go to 200 !# 2-wave is rightgoing do 140 m=1,meqn amdq(i,m) = amdq(i,m) + s(i,2)*wave(i,m,2) 140 continue c c # check 3-wave: c --------------- c rk1 = ql(i,1) rk2 = ql(i,2) rhou = ql(i,3) rhoE = ql(i,4) rho = rk1 + rk2 p = gamma1*(rhoE - rk2*q0 - 0.5d0*rhou**2/rho) c = dsqrt(gamma*p/rho) s3 = rhou/rho + c !# u+c in right state (cell i) * write(6,*) 'right state 1', a(i), c, T c rk1 = rk1 - wave(i,1,3) rk2 = rk2 - wave(i,2,3) rhou = rhou - wave(i,3,3) rhoE = rhoE - wave(i,4,3) rho = rk1 + rk2 p = gamma1*(rhoE - rk2*q0 - 0.5d0*rhou**2/rho) c = dsqrt(gamma*p/rho) s2 = rhou/rho + c !# u+c to left of 3-wave * write(6,*) 'right state 0', a(i), c, T c if (s2 .lt. 0.d0 .and. s3.gt.0.d0) then c # transonic rarefaction in the 3-wave sfract = s2 * (s3-s(i,3)) / (s3-s2) else if (s(i,3) .lt. 0.d0) then c # 3-wave is leftgoing sfract = s(i,3) else c # 3-wave is rightgoing go to 200 endif c do 160 m=1,meqn amdq(i,m) = amdq(i,m) + sfract*wave(i,m,3) 160 continue 200 continue c c # compute the rightgoing flux differences: c # df = SUM s*wave is the total flux difference and apdq = df - amdq c do 220 m=1,meqn do 220 i = 2-mbc, mx+mbc df = 0.d0 do 210 mw=1,mwaves df = df + s(i,mw)*wave(i,m,mw) 210 continue apdq(i,m) = df - amdq(i,m) 220 continue c 900 continue c if (pfix) then do 300 i=2-mbc,mx+mbc amdr = amdq(i,1)+amdq(i,2) apdr = apdq(i,1)+apdq(i,2) rhol = qr(i-1,1)+qr(i-1,2) rhor = ql(i ,1)+ql(i ,2) do 300 m=1,2 if (qr(i-1,3)+amdr.gt.0.d0) then Z = qr(i-1,m)/rhol else Z = ql(i ,m)/rhor endif amdq(i,m) = Z*amdr + (Z-qr(i-1,m)/rhol)*qr(i-1,3) apdq(i,m) = Z*apdr - (Z-ql(i ,m)/rhor)*ql(i ,3) 300 continue endif c do 400 i = 2-mbc, mx+mbc do 400 m=1,meqn amdq(i,m) = fr(i-1,m) + amdq(i,m) apdq(i,m) = -(fl(i ,m) - apdq(i,m)) 400 continue c return end c