• VTF
  • FSI
  • AMROC
  • SFC
  • Motion
  • STLIB
  • Main Page
  • src/1d/equations/euler/rpznd/rp1euzndefixg.f

    c
    c     =========================================================
          subroutine rp1euznd(maxmx,meqn,mwaves,mbc,mx,ql,qr,maux,
         &                    auxl,auxr,wave,s,amdq,apdq)
    c     =========================================================
    c
    c     # solve Riemann problems for the 1D ZND-Euler equations using Roe's 
    c     # approximate Riemann solver.  
    c
    c     # On input, ql contains the state vector at the left edge of each cell
    c     #           qr contains the state vector at the right edge of each cell
    c
    c     # On output, wave contains the waves, 
    c     #            s the speeds, 
    c     #            amdq the  left-going flux difference  A^- \Delta q
    c     #            apdq the right-going flux difference  A^+ \Delta q
    c
    c     # Note that the i'th Riemann problem has left state qr(i-1,:)
    c     #                                    and right state ql(i,:)
    c     # From the basic routines, this routine is called with ql = qr
    c
    c     # Copyright (C) 2002 Ralf Deiterding
    c     # Brandenburgische Universitaet Cottbus
    c
          implicit double precision (a-h,o-z)
    c
          dimension wave(1-mbc:maxmx+mbc, meqn, mwaves)
          dimension    s(1-mbc:maxmx+mbc, mwaves)
          dimension   ql(1-mbc:maxmx+mbc, meqn)
          dimension   qr(1-mbc:maxmx+mbc, meqn)
          dimension auxl(1-mbc:maxmx+mbc, maux)
          dimension auxr(1-mbc:maxmx+mbc, maux)
          dimension apdq(1-mbc:maxmx+mbc, meqn)
          dimension amdq(1-mbc:maxmx+mbc, meqn)
    c
    c     # local storage
    c     ---------------
          parameter (max2 = 100002)  !# assumes at most 100000 grid points with mbc=2
          dimension u(-1:max2), enth(-1:max2), a(-1:max2), smax(-1:max2)
          dimension delta(4), Y(2,-1:max2), fl(-1:max2,4), fr(-1:max2,4)
          logical efix, pfix, hll, roe, hllfix
          common /param/  gamma,gamma1,q0
    c
          data efix /.true./   !# use entropy fix for transonic rarefactions
          data pfix /.true./   !# use Larrouturou's positivity fix for species
          data hll  /.true./   !# use HLL solver if unphysical values occur
          data roe  /.true./   !# use Roe solver
    c 
    c     # Riemann solver returns flux differences
    c     ------------
          common /rpnflx/ mrpnflx
          mrpnflx = 1
    c
          if (-1.gt.1-mbc .or. max2 .lt. maxmx+mbc) then
             write(6,*) 'need to increase max2 in rp'
             stop
          endif
    c     
    c     # Compute Roe-averaged quantities:
    c
          do 10 i=2-mbc,mx+mbc
    c
             rhol = qr(i-1,1)+qr(i-1,2)
             rhor = ql(i  ,1)+ql(i  ,2)
             ul = qr(i-1,3)/rhol
             ur = ql(i  ,3)/rhor
             pl = gamma1*(qr(i-1,4) - qr(i-1,2)*q0 - 0.5d0*ul**2*rhol)
             pr = gamma1*(ql(i,  4) - ql(i,  2)*q0 - 0.5d0*ur**2*rhor)
             al = dsqrt(gamma*pl/rhol)
             ar = dsqrt(gamma*pr/rhor)
             rhsqrtl = dsqrt(rhol)  
             rhsqrtr = dsqrt(rhor)
             rhsq2 = rhsqrtl + rhsqrtr
             u(i) = (qr(i-1,3)/rhsqrtl + ql(i,3)/rhsqrtr) / rhsq2
             enth(i) = (((qr(i-1,4)+pl)/rhsqrtl
         &             + (ql(i  ,4)+pr)/rhsqrtr)) / rhsq2
             Y(1,i) = (qr(i-1,1)/rhsqrtl + ql(i,1)/rhsqrtr) / rhsq2
             Y(2,i) = (qr(i-1,2)/rhsqrtl + ql(i,2)/rhsqrtr) / rhsq2
    c        # speed of sound
             a2 = gamma1*(enth(i) - 0.5d0*u(i)**2 - Y(2,i)*q0)
             a(i) = dsqrt(a2) 
             smax(i) = dmax1(dmax1(dabs(ur-ar-(ul-al)),dabs(ur-ul)),
         &             dabs(ur+ar-(ul+al)))
    c
       10 continue
    c
          do 30 i=2-mbc,mx+mbc
    c
    c        # find a1 thru a3, the coefficients of the 4 eigenvectors:
    c
             do k = 1, 4
                delta(k) = ql(i,k) - qr(i-1,k)
             enddo
             drho = delta(1) + delta(2)
    c
             a2  = gamma1/a(i)**2 * (drho*0.5d0*u(i)**2 - delta(2)*q0 
         &       - u(i)*delta(3) + delta(4))
             a3 = 0.5d0*( a2 - ( u(i)*drho - delta(3) )/a(i) )
             a1 = a2 - a3 
    c
    c        # Compute the waves.
    c
    c        # 1-wave
             wave(i,1,1) = a1*Y(1,i)
             wave(i,2,1) = a1*Y(2,i)
             wave(i,3,1) = a1*(u(i) - a(i))
             wave(i,4,1) = a1*(enth(i) - u(i)*a(i))
             s(i,1) = u(i)-a(i)
    c
    c        # 2-wave
             wave(i,1,2) = delta(1) - Y(1,i)*a2
             wave(i,2,2) = delta(2) - Y(2,i)*a2         
             wave(i,3,2) = (drho - a2)*u(i)
             wave(i,4,2) = (drho - a2)*0.5d0*u(i)**2 + 
         &                 q0*(delta(2) - Y(2,i)*a2)
             s(i,2) = u(i)
    c
    c        # 3-wave
             wave(i,1,3) = a3*Y(1,i)
             wave(i,2,3) = a3*Y(2,i)
             wave(i,3,3) = a3*(u(i) + a(i))
             wave(i,4,3) = a3*(enth(i) + u(i)*a(i))
             s(i,3) = u(i)+a(i)
    c
    c         write (6,*) i,s(i,1),s(i,2),s(i,3)
    c                  
       30 continue
    c
    c     # compute fluxes as
    c     # F(Ur,Ul) = 0.5*( f(Ur)+f(Ul) - |A|(Ur-Ul) )
    c     --------------------------
    c
          call flx1(maxmx,meqn,mbc,mx,qr,maux,auxr,apdq)
          call flx1(maxmx,meqn,mbc,mx,ql,maux,auxl,amdq)
    c
          do 35 i = 1-mbc, mx+mbc
             do 35 m=1,meqn
                fl(i,m) = amdq(i,m)
                fr(i,m) = apdq(i,m)
     35   continue      
    c
          if (roe) then
             do 40 i = 2-mbc, mx+mbc
                do 40 m=1,meqn
                   amdq(i,m) = 0.5d0*(fl(i,m)+fr(i-1,m))
     40      continue
    c
    c         tau = 0.1d0
             do 50 i = 2-mbc, mx+mbc
                do 50 m=1,meqn
                   sw = 0.d0
                   do 60 mw=1,mwaves
                      sl = dabs(s(i,mw))
    c     # Alternative (worse results for 2nd order)
    c     # for f=1.8, 10 pts/L1/2, 0.25 stable, 0.125 instable
    c                  if (efix) sl = sl + 0.5d0*0.d0*smax(i)
    c
    c     # Also possible: Skip the linearly degenerate field
                      if (efix.and.dabs(s(i,mw)).lt.smax(i).and.mw.ne.2) 
         &               sl = s(i,mw)**2/(2.d0*smax(i))+
         &                    0.5d0*smax(i) 
    c                  if (efix.and.dabs(s(i,mw)).lt.smax(i)) 
    c     &                 sl = tau*(s(i,mw)**2/(2.d0*smax(i))+
    c     &                 0.5d0*smax(i))+(1.d0-tau)*sl
                      sw = sw + sl*wave(i,m,mw)
     60            continue
                   amdq(i,m) = amdq(i,m) - 0.5d0*sw
     50      continue
          endif
    c
          if (hll) then
             do 55 i = 2-mbc, mx+mbc
                hllfix = .false.
                if (.not.roe) hllfix = .true.
    c     
                rho1l = qr(i-1,1) + wave(i,1,1)
                rho2l = qr(i-1,2) + wave(i,2,1)
                rhoul = qr(i-1,3) + wave(i,3,1)
                El    = qr(i-1,4) + wave(i,4,1)
                pl = gamma1*(El - rho2l*q0 - 0.5d0*rhoul**2/(rho1l+rho2l))
                if (rho1l+rho2l.le.0.d0.or.pl.le.0.d0) 
         &         hllfix = .true.
    c     
                rho1r = ql(i,1) - wave(i,1,3)
                rho2r = ql(i,2) - wave(i,2,3)
                rhour = ql(i,3) - wave(i,3,3)
                Er    = ql(i,4) - wave(i,4,3)
                pr = gamma1*(Er - rho2r*q0 - 0.5d0*rhour**2/(rho1r+rho2r))
                if (rho1r+rho2r.le.0.d0.or.pr.le.0.d0) 
         &         hllfix = .true.
    c     
                if (hllfix) then
    c               if (roe) write (6,*) 'Switching to HLL in',i
    c     
                   rl = qr(i-1,1) + qr(i-1,2)
                   ul = qr(i-1,3)/rl
                   pl = gamma1*(qr(i-1,4) - qr(i-1,2)*q0 - 
         &              0.5d0*qr(i-1,3)**2/rl)
                   al = dsqrt(gamma*pl/rl)
    c     
                   rr = ql(i  ,1) + ql(i  ,2)
                   ur = ql(i  ,3)/rr
                   pr = gamma1*(ql(i  ,4) - ql(i  ,2)*q0 - 
         &              0.5d0*ql(i  ,3)**2/rr)
                   ar = dsqrt(gamma*pr/rr)
    c     
                   sl = dmin1(ul-al,ur-ar)
                   sr = dmax1(ul+al,ur+ar)
    c
                   do m=1,meqn
                      if (sl.ge.0.d0) amdq(i,m) = fr(i-1,m)
                      if (sr.le.0.d0) amdq(i,m) = fl(i,m)
                      if (sl.lt.0.d0.and.sr.gt.0.d0)
         &               amdq(i,m) = (sr*fr(i-1,m) - sl*fl(i,m) + 
         &                            sl*sr*(ql(i,m)-qr(i-1,m)))/ (sr-sl)
                   enddo
                   s(i,1) = sl
                   s(i,2) = 0.d0
                   s(i,3) = sr
                endif     
     55      continue
          endif
    c
          if (pfix) then
             do 70 i=2-mbc,mx+mbc
                amdr = amdq(i,1)+amdq(i,2)
                rhol = qr(i-1,1)+qr(i-1,2)
                rhor = ql(i  ,1)+ql(i  ,2)
                do 70 m=1,2
                   if (amdr.gt.0.d0) then
                      Z = qr(i-1,m)/rhol
                   else
                      Z = ql(i  ,m)/rhor
                   endif
                   amdq(i,m) = Z*amdr
     70      continue 
          endif
    c
          do 80 i = 2-mbc, mx+mbc
             do 80 m=1,meqn
                apdq(i,m) = -amdq(i,m)
     80   continue
    c
          return
          end
    c
    

<