• VTF
  • FSI
  • AMROC
  • SFC
  • Motion
  • STLIB
  • Main Page
  • src/1d/equations/euler/rpznd/rp1euznd.f

    c
    c =========================================================
          subroutine rp1euznd(maxmx,meqn,mwaves,mbc,mx,ql,qr,maux,
         &     auxl,auxr,wave,s,amdq,apdq)
    c =========================================================
    c
    c     # solve Riemann problems for the 1D ZND-Euler equations using Roe's 
    c     # approximate Riemann solver.  
    c
    c     # On input, ql contains the state vector at the left edge of each cell
    c     #           qr contains the state vector at the right edge of each cell
    c     # On output, wave contains the waves, 
    c     #            s the speeds, 
    c     #            amdq the  left-going flux difference  A^- \Delta q
    c     #            apdq the right-going flux difference  A^+ \Delta q
    c
    c     # Note that the i'th Riemann problem has left state qr(i-1,:)
    c     #                                    and right state ql(i,:)
    c     # From the basic clawpack routine step1, rp is called with ql = qr = q.
    c
    c     # Copyright (C) 2002 Ralf Deiterding
    c     # Brandenburgische Universitaet Cottbus
    c
          implicit double precision (a-h,o-z)
          dimension   ql(1-mbc:maxmx+mbc, meqn)
          dimension   qr(1-mbc:maxmx+mbc, meqn)
          dimension    s(1-mbc:maxmx+mbc, mwaves)
          dimension wave(1-mbc:maxmx+mbc, meqn, mwaves)
          dimension amdq(1-mbc:maxmx+mbc, meqn)
          dimension apdq(1-mbc:maxmx+mbc, meqn)
    c
    c     # local storage
    c     ---------------
          parameter (max2 = 100002)  !# assumes at most 100000 grid points with mbc=2
          dimension u(-1:max2), enth(-1:max2),a(-1:max2)
          logical efix, pfix
          common /param/  gamma,gamma1,q0
    c
    c     define local arrays
    c
          dimension delta(4), Y(2,-1:max2)
    c
          data efix /.true./    !# use entropy fix for transonic rarefactions
          data pfix /.true./   !# use Larrouturou's positivity fix for species
    c
    c     # Riemann solver returns fluxes
    c     ------------
          common /rpnflx/ mrpnflx
          mrpnflx = 0
    c
    c     # Compute Roe-averaged quantities:
    c
          do 20 i=2-mbc,mx+mbc 
    c
    	 pl = gamma1*(qr(i-1,4) - qr(i-1,2)*q0 - 
         &        0.5d0*qr(i-1,3)**2/(qr(i-1,1) + qr(i-1,2)))
    	 pr = gamma1*(ql(i,  4) - ql(i,  2)*q0 - 
         &        0.5d0*ql(i,  3)**2/(ql(i,  1) + ql(i,  2)))
             rhsqrtl = dsqrt(qr(i-1,1) + qr(i-1,2))  
             rhsqrtr = dsqrt(ql(i,  1) + ql(i,  2))
             rhsq2 = rhsqrtl + rhsqrtr
    	 u(i) = (qr(i-1,3)/rhsqrtl + ql(i,3)/rhsqrtr) / rhsq2
    	 enth(i) = (((qr(i-1,4)+pl)/rhsqrtl
         &		   + (ql(i  ,4)+pr)/rhsqrtr)) / rhsq2
             Y(1,i) = (qr(i-1,1)/rhsqrtl + ql(i,1)/rhsqrtr) / rhsq2
             Y(2,i) = (qr(i-1,2)/rhsqrtl + ql(i,2)/rhsqrtr) / rhsq2
    c        # speed of sound
             a2 = gamma1*(enth(i) - 0.5d0*u(i)**2 - Y(2,i)*q0)
             a(i) = dsqrt(a2) 
    c
       20    continue
    c
          do 30 i=2-mbc,mx+mbc
    c
    c        # find a1 thru a3, the coefficients of the 4 eigenvectors:
    c
             do k = 1, 4
                delta(k) = ql(i,k) - qr(i-1,k)
             enddo
             drho = delta(1) + delta(2)
    c
             a2 = gamma1/a(i)**2 * (drho*0.5d0*u(i)**2 - delta(2)*q0 
         &        - u(i)*delta(3) + delta(4))
             a3 = 0.5d0*( a2 - ( u(i)*drho - delta(3) )/a(i) )
             a1 = a2 - a3 
    c
    c        # Compute the waves.
    c
    c      # 1-wave
             wave(i,1,1) = a1*Y(1,i)
             wave(i,2,1) = a1*Y(2,i)
             wave(i,3,1) = a1*(u(i)-a(i))
             wave(i,4,1) = a1*(enth(i) - u(i)*a(i))
             s(i,1) = u(i)-a(i)
    c
    c      # 2-wave and 3-wave
             wave(i,1,2) = delta(1) - Y(1,i)*a2
             wave(i,2,2) = delta(2) - Y(2,i)*a2              
             wave(i,3,2) = u(i)*(drho - a2)
             wave(i,4,2) = 0.5d0*u(i)**2*(drho - a2) + 
         &        q0*(delta(2) - Y(2,i)*a2)
             s(i,2) = u(i)
    c
    c      # 4-wave
             wave(i,1,3) = a3*Y(1,i)
             wave(i,2,3) = a3*Y(2,i)
             wave(i,3,3) = a3*(u(i)+a(i))
             wave(i,4,3) = a3*(enth(i)+u(i)*a(i))
             s(i,3) = u(i)+a(i)
    c                  
       30 continue
    c
    c     # compute Godunov flux f0:
    c     --------------------------
    c
          if (efix) go to 110
    c
    c     # no entropy fix
    c     ----------------
    c
    c     # amdq = SUM s*wave   over left-going waves
    c     # apdq = SUM s*wave   over right-going waves
    c
          do 100 m=1,meqn
             do 100 i=2-mbc, mx+mbc
                amdq(i,m) = 0.d0
                apdq(i,m) = 0.d0
                do 90 mw=1,mwaves
                   if (s(i,mw) .lt. 0.d0) then
                       amdq(i,m) = amdq(i,m) + s(i,mw)*wave(i,m,mw)
                     else
                       apdq(i,m) = apdq(i,m) + s(i,mw)*wave(i,m,mw)
                     endif
       90       continue
      100 continue
          go to 900
      110 continue
    c
    c     # With entropy fix
    c     ------------------
    c
    c    # compute flux differences amdq and apdq.
    c    # First compute amdq as sum of s*wave for left going waves.
    c    # Incorporate entropy fix by adding a modified fraction of wave
    c    # if s should change sign.
    c
          do 200 i=2-mbc,mx+mbc
    c
    c        # check 1-wave:
    c        ---------------
    c
             rk1  = qr(i-1,1)
             rk2  = qr(i-1,2)
             rhou = qr(i-1,3)
             rhoE = qr(i-1,4) 
             rho  = rk1 + rk2
    	 p = gamma1*(rhoE - rk2*q0 - 0.5d0*rhou**2/rho)
             c = dsqrt(gamma*p/rho)
             s0 = rhou/rho - c     !# u-c in left state (cell i-1)
    *        write(6,*) 'left state 0', a(i), c, T
    c 
    c        # check for fully supersonic case:
             if (s0.ge.0.d0 .and. s(i,1).gt.0.d0)  then
    c           # everything is right-going
                do 60 m=1,meqn
                   amdq(i,m) = 0.d0
       60       continue
                go to 200
             endif
    c
             rk1  = rk1  + wave(i,1,1)
             rk2  = rk2  + wave(i,2,1)
             rhou = rhou + wave(i,3,1)
             rhoE = rhoE + wave(i,4,1)
             rho  = rk1 + rk2
    	 p = gamma1*(rhoE - rk2*q0 - 0.5d0*rhou**2/rho)
             c = dsqrt(gamma*p/rho)
             s1 = rhou/rho - c  !# u-c to right of 1-wave
    *        write(6,*) 'left state 1', a(i), c, T
    c
             if (s0.lt.0.d0 .and. s1.gt.0.d0) then
    c            # transonic rarefaction in the 1-wave
                 sfract = s0 * (s1-s(i,1)) / (s1-s0)
               else if (s(i,1) .lt. 0.d0) then
    c            # 1-wave is leftgoing
                 sfract = s(i,1)
               else
    c            # 1-wave is rightgoing
                 sfract = 0.d0   !# this shouldn't happen since s0 < 0
               endif
             do 120 m=1,meqn
                amdq(i,m) = sfract*wave(i,m,1)
      120    continue 
    c
    c        # check 2-wave:
    c        ---------------
    c
             if (s(i,2) .ge. 0.d0) go to 200  !# 2-wave is rightgoing
             do 140 m=1,meqn
                amdq(i,m) = amdq(i,m) + s(i,2)*wave(i,m,2)
      140    continue
    c
    c        # check 3-wave:
    c        ---------------
    c
             rk1  = ql(i,1)
             rk2  = ql(i,2)
             rhou = ql(i,3)
             rhoE = ql(i,4) 
             rho  = rk1 + rk2
    	 p = gamma1*(rhoE - rk2*q0 - 0.5d0*rhou**2/rho)
             c = dsqrt(gamma*p/rho)
             s3 = rhou/rho + c     !# u+c in right state  (cell i)
    *        write(6,*) 'right state 1', a(i), c, T
    c          
             rk1  = rk1  - wave(i,1,3)
             rk2  = rk2  - wave(i,2,3)
             rhou = rhou - wave(i,3,3)
             rhoE = rhoE - wave(i,4,3)
             rho  = rk1 + rk2
    	 p = gamma1*(rhoE - rk2*q0 - 0.5d0*rhou**2/rho)
             c = dsqrt(gamma*p/rho)
             s2 = rhou/rho + c   !# u+c to left of 3-wave
    *        write(6,*) 'right state 0', a(i), c, T
    c
             if (s2 .lt. 0.d0 .and. s3.gt.0.d0) then
    c            # transonic rarefaction in the 3-wave
                 sfract = s2 * (s3-s(i,3)) / (s3-s2)
               else if (s(i,3) .lt. 0.d0) then
    c            # 3-wave is leftgoing
                 sfract = s(i,3)
               else
    c            # 3-wave is rightgoing
                 go to 200
               endif
    c
             do 160 m=1,meqn
                amdq(i,m) = amdq(i,m) + sfract*wave(i,m,3)
      160    continue
      200 continue
    c
    c     # compute the rightgoing flux differences:
    c     # df = SUM s*wave   is the total flux difference and apdq = df - amdq
    c
          do 220 m=1,meqn
             do 220 i = 2-mbc, mx+mbc
                df = 0.d0
                do 210 mw=1,mwaves
                   df = df + s(i,mw)*wave(i,m,mw)
      210       continue
                apdq(i,m) = df - amdq(i,m)
      220 continue 
    c
      900 continue
    c
          if (pfix) then
             do 300 i=2-mbc,mx+mbc
                amdr = amdq(i,1)+amdq(i,2)
                apdr = apdq(i,1)+apdq(i,2)
                rhol = qr(i-1,1)+qr(i-1,2)
                rhor = ql(i  ,1)+ql(i  ,2)
                do 300 m=1,2
                   if (qr(i-1,3)+amdr.gt.0.d0) then
                      Z = qr(i-1,m)/rhol
                   else
                      Z = ql(i  ,m)/rhor
                   endif
                   amdq(i,m) = Z*amdr + (Z-qr(i-1,m)/rhol)*qr(i-1,3)
                   apdq(i,m) = Z*apdr - (Z-ql(i  ,m)/rhor)*ql(i  ,3)
     300     continue      
          endif
    c
          return
          end
    c
    

<