• VTF
  • FSI
  • AMROC
  • SFC
  • Motion
  • STLIB
  • Main Page
  • src/1d/equations/euler/rp/rp1euvijag.f

    c
    c
    c =========================================================
          subroutine rp1eu(maxmx,meqn,mwaves,mbc,mx,ql,qr,maux,
         &     auxl,auxr,wave,s,fl,fr)
    c =========================================================
    c
    c     # solve Riemann problems for the 1D Euler equations using 
    c     # the Flux-Vector-Splitting of Vijayasundaram
    c
    c     # On input, ql contains the state vector at the left edge of each cell
    c     #           qr contains the state vector at the right edge of each cell
    c     # On output, wave contains the waves, s the speeds, 
    c     # fl and fr the positive and negative flux.
    c
    c     # Note that the i'th Riemann problem has left state qr(i-1,:)
    c     #                                    and right state ql(i,:)
    c     # From the basic routine step1, rp is called with ql = qr = q.
    c
    c     # Copyright (C) 2002 Ralf Deiterding
    c     # Brandenburgische Universitaet Cottbus
    c
          implicit double precision (a-h,o-z)
          dimension   ql(1-mbc:maxmx+mbc, meqn)
          dimension   qr(1-mbc:maxmx+mbc, meqn)
          dimension    s(1-mbc:maxmx+mbc, mwaves)
          dimension wave(1-mbc:maxmx+mbc, meqn, mwaves)
          dimension   fl(1-mbc:maxmx+mbc, meqn)
          dimension   fr(1-mbc:maxmx+mbc, meqn)
          double precision el(3), er(3)
          common /param/  gamma,gamma1
    c
    c     # Method returns fluxes
    c     ------------
          common /rpnflx/ mrpnflx
          mrpnflx = 1
    c
          do 10 i=2-mbc,mx+mbc
             rhol  = qr(i-1,1)
             rhoul = qr(i-1,2)
             rhoEl = qr(i-1,3)
             rhor  = ql(i  ,1)
             rhour = ql(i  ,2)
             rhoEr = ql(i  ,3)
             pl   = gamma1*(rhoEl - 0.5d0*rhoul**2/rhol)
             pr   = gamma1*(rhoEr - 0.5d0*rhour**2/rhor)
    c
             rho  = 0.5d0*(rhol  + rhor )
             rhou = 0.5d0*(rhoul + rhour)
             rhoE = 0.5d0*(rhoEl + rhoEr)
             u   = rhou/rho
             p   = gamma1*(rhoE - 0.5d0*rhou**2/rho)
             H = (rhoE+p)/rho
             if (p.le.0.d0.or.rho.le.0.d0.or.pl.le.0.d0.or.pr.le.0.d0) then
                write (6,*) 'Error in middle state in',i
                write (6,*) p,pl,pr,rho,rhol,rhor,rhoul,rhour,rhoEl,rhoEr
             endif
             a = dsqrt(gamma*p/rho)
             f = 0.5d0/a**2
    c
             el(1) = 0.5d0*(u-a + dabs(u-a))
             el(2) = 0.5d0*(u   + dabs(u)  )
             el(3) = 0.5d0*(u+a + dabs(u+a))
             er(1) = 0.5d0*(u-a - dabs(u-a))
             er(2) = 0.5d0*(u   - dabs(u)  )
             er(3) = 0.5d0*(u+a - dabs(u+a))
    c
             zl = el(1)-el(3)
             zr = er(1)-er(3)
             ol = el(1)-2.d0*el(2)+el(3)
             or = er(1)-2.d0*er(2)+er(3)
             dul = a*(rhol*u-rhoul)
             dur = a*(rhor*u-rhour)
             dEl = gamma1*(rhoEl+0.5d0*rhol*u**2-rhoul*u)
             dEr = gamma1*(rhoEr+0.5d0*rhor*u**2-rhour*u)
             f1 =   f*(zl*dul + ol*dEl + zr*dur + or*dEr)
             f2 = a*f*(ol*dul + zl*dEl + or*dur + zr*dEr)
    c
             fl(i,1) = rhol *el(2) + rhor *er(2) +   f1
             fl(i,2) = rhoul*el(2) + rhour*er(2) + u*f1 -   f2
             fl(i,3) = rhoEl*el(2) + rhoEr*er(2) + H*f1 - u*f2
    c
             do 20 m = 1,meqn
                fr(i,m) = -fl(i,m)
     20      continue
    c
             do 10 mw=1,mwaves
                s(i,mw) = dmax1(dabs(el(mw)),dabs(er(mw)))
                do 10 m=1,meqn
                   wave(i,m,mw) = 0.d0
     10   continue
    c
          return
          end
    c
    

<