• VTF
  • FSI
  • AMROC
  • SFC
  • Motion
  • STLIB
  • Main Page
  • src/1d/equations/euler/rprhok/rp1eurhokefixg.f

    c
    c =========================================================
          subroutine rp1eurhok(maxmx,meqn,mwaves,mbc,mx,ql,qr,maux,
         &     auxl,auxr,wave,s,amdq,apdq)
    c =========================================================
    c
    c     # solve Riemann problems for the thermally perfect 1D multi-component 
    c     # Euler equations using a Roe-type approximate Riemann solver.  
    c     # Scheme is blended with HLL for robustness. 
    c
    c     # On input, ql contains the state vector at the left edge of each cell
    c     #           qr contains the state vector at the right edge of each cell
    c     # On output, wave contains the waves, 
    c     #            s the speeds, 
    c     #            amdq the  left-going flux difference  A^- \Delta q
    c     #            apdq the right-going flux difference  A^+ \Delta q
    c
    c     # Note that the i'th Riemann problem has left state qr(i-1,:)
    c     #                                    and right state ql(i,:)
    c     # From the basic clawpack routine step1, rp is called with ql = qr = q.
    c
    c     # Copyright (C) 2002 Ralf Deiterding
    c     # Brandenburgische Universitaet Cottbus
    c
          implicit double precision (a-h,o-z)
          dimension   ql(1-mbc:maxmx+mbc, meqn)
          dimension   qr(1-mbc:maxmx+mbc, meqn)
          dimension    s(1-mbc:maxmx+mbc, mwaves)
          dimension wave(1-mbc:maxmx+mbc, meqn, mwaves)
          dimension amdq(1-mbc:maxmx+mbc, meqn)
          dimension apdq(1-mbc:maxmx+mbc, meqn)
          dimension auxl(1-mbc:maxmx+mbc, maux)
          dimension auxr(1-mbc:maxmx+mbc, maux)
    c
    c     # local storage
    c     ---------------
          parameter (max2 = 10002)  !# assumes at most 10000 grid points with mbc=2
          dimension u(-1:max2),enth(-1:max2),a(-1:max2),smax(-1:max2)
          dimension g1a2(-1:max2)
          logical efix, pfix, hll, roe, hllfix
    c
    c     define local arrays
    c
          include "ck.i"
    c
          dimension delta(LeNsp+2)
          dimension rkl(LeNsp), rkr(LeNsp)
          dimension hkl(LeNsp), hkr(LeNsp)
          dimension Y(LeNsp,-1:max2), pk(LeNsp,-1:max2)
          dimension fl(-1:max2,LeNsp+3), fr(-1:max2,LeNsp+3)
    c 
          data efix /.true./   !# use entropy fix
          data pfix /.true./   !# use Larrouturou's positivity fix for species
          data hll  /.true./   !# use HLL instead of Roe solver, if unphysical values occur
          data roe  /.true./   !# turn off Roe solver when debugging HLL
    c 
    c     # Riemann solver returns fluxes
    c     ------------
          common /rpnflx/ mrpnflx
          mrpnflx = 1
    c
          mu = Nsp+1
          mE = Nsp+2
          mT = Nsp+3
    c
    c     # Compute Roe-averaged quantities:
    c
          do 20 i=2-mbc,mx+mbc
             rhol = 0.d0
             rhor = 0.d0
             do k = 1, Nsp
                rkl(k) = qr(i-1,k)
                rkr(k) = ql(i  ,k)
                rhol = rhol + rkl(k)
                rhor = rhor + rkr(k)
             enddo
             if( rhol.le.1.d-10 ) then
                write(6,*) 'negative total density, left', rhol
                stop
             endif
             if( rhor.le.1.d-10 ) then
                write(6,*) 'negative total density, right', rhor
                stop
             endif
    c
    c        # compute left/right rho/W and rho*Cp
    c     
             rhoWl = 0.d0
             rhoWr = 0.d0
             do k = 1, Nsp
                rhoWl = rhoWl + rkl(k)/Wk(k)
                rhoWr = rhoWr + rkr(k)/Wk(k)
             enddo
    c
    c        # calculate left/right Temperatures
    c
             rhoel = qr(i-1,mE)-0.5d0*qr(i-1,mu)**2/rhol
             call SolveTrhok(qr(i-1,mT),rhoel,rhoWl,rkl,Nsp,ifail) 
             rhoer = ql(i  ,mE)-0.5d0*ql(i  ,mu)**2/rhor
             call SolveTrhok(ql(i  ,mT),rhoer,rhoWr,rkr,Nsp,ifail) 
    c
             Tl = qr(i-1,mT)
             Tr = ql(i  ,mT)
             pl = rhoWl*RU*Tl 
             pr = rhoWr*RU*Tr
    c
    c        # compute quantities for rho-average
    c
             rhsqrtl = dsqrt(rhol)  
             rhsqrtr = dsqrt(rhor)
             rhsq2 = rhsqrtl + rhsqrtr
    c
    c        # find rho-averaged specific velocity and enthalpy
    c
             u(i) = (qr(i-1,mu)/rhsqrtl +
         &           ql(i  ,mu)/rhsqrtr) / rhsq2
             enth(i) = (((qr(i-1,mE)+pl)/rhsqrtl
         &             + (ql(i  ,mE)+pr)/rhsqrtr)) / rhsq2  
    c
    c        # compute rho-averages for T, cp, and W
    c
             T  = (Tl * rhsqrtl + Tr * rhsqrtr) / rhsq2
             W  = rhsq2 / (rhoWl/rhsqrtl + rhoWr/rhsqrtr) 
    c        
    c        # evaluate left/right entropies and mean cp
    c
             call tabintp( Tl, hkl, hms, Nsp )
             call tabintp( Tr, hkr, hms, Nsp )
             do k = 1, Nsp
                Y(k,i) = (rkl(k)/rhsqrtl + rkr(k)/rhsqrtr) / rhsq2
             enddo
             
             Cp = Cpmix( Tl, Tr, hkl, hkr, Y(1,i) )
             gamma1 = RU / ( W*Cp - RU )
             gamma  = gamma1 + 1.d0
    c
    c        # find rho-averaged specific enthalpies,
    c        # compute rho-averaged mass fractions and
    c        # compute partial pressure derivatives
    c
             tmp = gamma * RU * T / gamma1 
    *         ht = 0.d0
             do k = 1, Nsp
                hk     = (hkl(k)*rhsqrtl + hkr(k)*rhsqrtr) / rhsq2
    *            ht = ht + Y(k,i)*(hkl(k)*rhsqrtl + hkr(k)*rhsqrtr) / rhsq2
                pk(k,i) = 0.5d0*u(i)**2 - hk + tmp / Wk(k)
             enddo
    c
    *         write (6,4) qr(i-1,mE)+pl, ql(i,mE)+pr, 
    *     &        ht+0.5d0*u(i)**2, enth(i), ht+0.5d0*u(i)**2-enth(i) 
    * 4    format(e16.8,e16.8,e16.8,e16.8,e24.16)
    c
    c        # compute speed of sound
    c
             a2 = enth(i)-u(i)**2   
             do k = 1, Nsp
                a2 = a2 + Y(k,i) * pk(k,i)
             enddo
             g1a2(i) = 1.d0 / a2
             a(i) = dsqrt(gamma1*a2) 
    c
             rhoCpl = avgtabip( Tl, rkl, cpk, Nsp )
             rhoCpr = avgtabip( Tr, rkr, cpk, Nsp )
             gammal = RU / ( rhoCpl/rhoWl - RU ) + 1.d0
             gammar = RU / ( rhoCpr/rhoWr - RU ) + 1.d0
             ul = qr(i-1,mu)/rhol
             ur = ql(i  ,mu)/rhor
             al = dsqrt(gammal*pl/rhol)
             ar = dsqrt(gammar*pr/rhor)
             smax(i) = dmax1(dmax1(dabs(ur-ar-(ul-al)),dabs(ur-ul)),
         &        dabs(ur+ar-(ul+al)))
    c
       20    continue
    c
    c
          do 30 i=2-mbc,mx+mbc
    c
    c        # find a1 thru a3, the coefficients of the mE eigenvectors:
    c
             dpdr = 0.d0
             dpY  = 0.d0
             drho = 0.d0
             do k = 1, Nsp
                delta(k) = ql(i,k) - qr(i-1,k)
                drho = drho + delta(k)
                dpdr = dpdr + pk(k,i) * delta(k)
                dpY  = dpY  + pk(k,i) * Y(k,i)
             enddo
             delta(mu) = ql(i,mu) - qr(i-1,mu)
             delta(mE) = ql(i,mE) - qr(i-1,mE)
    c
             a2 = g1a2(i)*(dpdr - u(i)*delta(mu) + delta(mE))
             a3 = 0.5d0*( a2 - ( u(i)*drho - delta(mu) )/a(i) )
             a1 = a2 - a3 
    c
    c
    c        # Compute the waves.
    c        # Note that the 1+k-waves, for 1 .le. k .le. Nsp travel at
    c        # the same speed and are lumped together in wave(.,.,2).
    c        # The 3-wave is then stored in wave(.,.,3).
    c
             do k = 1, Nsp
    c         # 1-wave
                wave(i,k,1) = a1*Y(k,i)
    c         # 2-wave
                wave(i,k,2) = delta(k) - Y(k,i)*a2
    c         # 3-wave
                wave(i,k,3) = a3*Y(k,i)
             enddo
    
    c      # 1-wave
             wave(i,mu,1) = a1*(u(i)-a(i))
             wave(i,mE,1) = a1*(enth(i) - u(i)*a(i))
             wave(i,mT,1) = 0.d0
             s(i,1) = u(i)-a(i)
    c
    c      # 2-wave
             wave(i,mu,2) = u(i)*(drho - a2)
             wave(i,mE,2) = u(i)**2*(drho - a2) - dpdr + dpY*a2
             wave(i,mT,2) = 0.d0
             s(i,2) = u(i)
    c
    c      # 3-wave
             wave(i,mu,3) = a3*(u(i)+a(i))
             wave(i,mE,3) = a3*(enth(i)+u(i)*a(i))
             wave(i,mT,3) = 0.d0
             s(i,3) = u(i)+a(i)
    c                  
       30 continue
    c
    c
    c     # compute fluxes as
    c     # F(Ur,Ul) = 0.5*( f(Ur)+f(Ul) - |A|(Ur-Ul) )
    c     --------------------------
    c
          call flx1(maxmx,meqn,mbc,mx,qr,maux,auxr,apdq)
          call flx1(maxmx,meqn,mbc,mx,ql,maux,auxl,amdq)
    c
          do 35 i = 1-mbc, mx+mbc
             do 35 m=1,meqn
                fl(i,m) = amdq(i,m)
                fr(i,m) = apdq(i,m)
     35   continue      
    c
          if (roe) then
             do 40 i = 2-mbc, mx+mbc
                do 40 m=1,meqn
                   amdq(i,m) = 0.5d0*(fl(i,m)+fr(i-1,m))
     40      continue
    c     
             do 50 i = 2-mbc, mx+mbc
                do 50 m=1,meqn
                   sw = 0.d0
                   do 60 mw=1,mwaves
                      sl = dabs(s(i,mw))
                      if (efix.and.dabs(s(i,mw)).lt.smax(i).and.mw.ne.2) 
         &                 sl = s(i,mw)**2/(2.d0*smax(i))+0.5d0*smax(i) 
                      sw = sw + sl*wave(i,m,mw)
     60            continue
                   amdq(i,m) = amdq(i,m) - 0.5d0*sw
     50      continue
          endif
    c
          if (hll) then
             do 55 i = 2-mbc, mx+mbc
    c     # set this to hllfix = .true. when debugging HLL
                hllfix = .false.
                if (.not.roe) hllfix = .true.
    c     
                rhol   = 0.d0
                rhoWl  = 0.d0
                do k = 1, Nsp
                   rkl(k) = qr(i-1,k) + wave(i,k,1)
                   rhol   = rhol   + rkl(k)
                   rhoWl  = rhoWl  + rkl(k)/Wk(k)
                enddo
                rhoul = qr(i-1,mu) + wave(i,mu,1)
                ul    = rhoul/rhol
                rhoEl = qr(i-1,mE) + wave(i,mE,1)
                Tl    = qr(i-1,mT)
                rhoel = rhoEl - 0.5d0*rhoul**2/rhol
                call SolveTrhok( Tl, rhoel, rhoWl, rkl, Nsp, ifail)
                rhoCpl = avgtabip( Tl, rkl, cpk, Nsp )
                gammal = RU / ( rhoCpl/rhoWl - RU ) + 1.d0
                pl = rhoWl*RU*Tl
                al = dsqrt(gammal*pl/rhol)
                if (rhol.le.0.d0.or.pl.le.0.d0) hllfix = .true.
    c     
                rhor   = 0.d0
                rhoWr  = 0.d0
                do k = 1, Nsp
                   rkr(k) = ql(i  ,k) - wave(i,k,3)
                   rhor   = rhor   + rkr(k)
                   rhoWr  = rhoWr  + rkr(k)/Wk(k)
                enddo
                rhour = ql(i  ,mu) - wave(i,mu,3)
                ur    = rhoul/rhol
                rhoEr = ql(i  ,mE) - wave(i,mE,3)
                Tr    = ql(i  ,mT)
                rhoer = rhoEr - 0.5d0*rhour**2/rhor
                call SolveTrhok( Tr, rhoer, rhoWr, rkr, Nsp, ifail)
                rhoCpr = avgtabip( Tr, rkr, cpk, Nsp )
                gammar = RU / ( rhoCpr/rhoWr - RU ) + 1.d0
                pr = rhoWr*RU*Tr
                ar = dsqrt(gammar*pr/rhor)
                if (rhor.le.0.d0.or.pr.le.0.d0) hllfix = .true.
    c     
                if (hllfix) then
    c               if (roe) write (6,*) 'Switching to HLL in',i
    c     
                   rhol  = 0.d0
                   rhoWl = 0.d0
                   do k = 1, Nsp
                      rkl(k) = qr(i-1,k) 
                      rhol   = rhol  + qr(i-1,k)
                      rhoWl  = rhoWl + qr(i-1,k)/Wk(k)
                   enddo
                   ul = qr(i-1,mu)/rhol
                   Tl = qr(i-1,mT)
                   pl = rhoWl*RU*Tl
                   rhoCpl = avgtabip( Tl, rkl, cpk, Nsp )
                   gammal = RU / ( rhoCpl/rhoWl - RU ) + 1.d0
                   al = dsqrt(gammal*pl/rhol)
    c
                   rhor  = 0.d0
                   rhoWr = 0.d0
                   do k = 1, Nsp
                      rkr(k) = ql(i  ,k) 
                      rhor   = rhor  + ql(i  ,k)
                      rhoWr  = rhoWr + ql(i  ,k)/Wk(k)
                   enddo
                   ur = ql(i  ,mu)/rhor
                   Tr = ql(i  ,mT)
                   pr = rhoWr*RU*Tr
                   rhoCpr = avgtabip( Tr, rkr, cpk, Nsp )
                   gammar = RU / ( rhoCpr/rhoWr - RU ) + 1.d0
                   ar = dsqrt(gammar*pr/rhor)
    c
                   sl = dmin1(ul-al,ur-ar)
                   sr = dmax1(ul+al,ur+ar)
    c
                   do m=1,meqn
                      if (sl.ge.0.d0) amdq(i,m) = fr(i-1,m)
                      if (sr.le.0.d0) amdq(i,m) = fl(i,m)
                      if (sl.lt.0.d0.and.sr.gt.0.d0) 
         &                 amdq(i,m) = (sr*fr(i-1,m) - sl*fl(i,m) + 
         &                 sl*sr*(ql(i,m)-qr(i-1,m)))/ (sr-sl)
                   enddo
                   amdq(i,mT) = 0.d0
                   s(i,1) = sl
                   s(i,2) = 0.d0
                   s(i,3) = sr
                endif     
     55      continue
          endif
    c
          if (pfix) then
             do 70 i=2-mbc,mx+mbc
                amdr = 0.d0
                rhol = 0.d0
                rhor = 0.d0
                do k = 1, Nsp
                   amdr = amdr + amdq(i,k)
                   rhol = rhol + qr(i-1,k)
                   rhor = rhor + ql(i  ,k)
                enddo
                do k=1, Nsp
                   if (amdr.gt.0.d0) then
                      Z = qr(i-1,k)/rhol
                   else
                      Z = ql(i  ,k)/rhor
                   endif
                   amdq(i,k) = Z*amdr
                enddo
     70      continue    
          endif
    c
          do 80 i = 2-mbc, mx+mbc
             do 80 m=1,meqn
                apdq(i,m) = -amdq(i,m)
     80   continue
    c
          return
          end
    c
    c
    c  ***********************************************************
    c
          double precision function Cpmix( Tl, Tr, hl, hr, Y )
          implicit double precision(a-h,o-z)
          include  "ck.i"
    c
          dimension Y(*)
          dimension hl(*), hr(*)
          data Tol /1.d-6/
    c
          if( dabs(Tr-Tl).gt.Tol ) then
             Cp = 0.d0
             do k = 1, Nsp
                Cp = Cp + (hr(k)-hl(k)) * Y(k) 
             enddo
             Cp = Cp / (Tr-Tl)
          else
             T = 0.5d0*(Tr+Tl)
             Cp = avgtabip( T, Y, cpk, Nsp )
          endif
          Cpmix = Cp
    c
          return
          end
    
    

<