• VTF
  • FSI
  • AMROC
  • SFC
  • Motion
  • STLIB
  • Main Page
  • src/1d/equations/euler/rp/rp1euforceg.f

    c
    c
    c =========================================================
          subroutine rp1eu(maxmx,meqn,mwaves,mbc,mx,ql,qr,maux,
         &     auxl,auxr,wave,s,fl,fr)
    c =========================================================
    c
    c     # FORCE scheme for the 1D Euler equations. The flux of the FORCE
    c     # scheme is the arithmetic mean of the fluxes of the finite difference
    c     # schemes of Richtmyer and Lax-Friedrichs. Use parameters
    c     # richtmyer, laxfriedrich to switch to the original schemes.
    c
    c     # Eleuterio F. Toro, "Riemann solvers and numerical methods
    c     # for fluid dynamics", Springer-Verlag, Berlin 1997.
    c
    c     # On input, ql contains the state vector at the left edge of each cell
    c     #           qr contains the state vector at the right edge of each cell
    c     # On output, wave contains the waves, s the speeds, 
    c     # fl and fr the positive and negative flux.
    c
    c     # Note that the i'th Riemann problem has left state qr(i-1,:)
    c     #                                    and right state ql(i,:)
    c     # From the basic clawpack routine step1, rp is called with ql = qr = q.
    c
    c     Author:  Ralf Deiterding
    c
          implicit double precision (a-h,o-z)
          dimension   ql(1-mbc:maxmx+mbc, meqn)
          dimension   qr(1-mbc:maxmx+mbc, meqn)
          dimension    s(1-mbc:maxmx+mbc, mwaves)
          dimension wave(1-mbc:maxmx+mbc, meqn, mwaves)
          dimension   fl(1-mbc:maxmx+mbc, meqn)
          dimension   fr(1-mbc:maxmx+mbc, meqn)
          dimension auxl(1-mbc:maxmx+mbc, maux)
          dimension auxr(1-mbc:maxmx+mbc, maux)
          common /param/  gamma,gamma1
          include "call.i"
    c
    c     # local storage
    c     ---------------
          parameter (max2 = 100000)  !# assumes at most 100000 grid points with mbc=2
          dimension qint(-1:max2+2,3), fint(-1:max2+2,3), 
         &     auxint(-1:max2+2,0)
          logical richtmyer, laxfriedrich
    c
          data richtmyer    /.true./     
          data laxfriedrich /.true./     
    c
    c     # Method returns fluxes
    c     ------------
          common /rpnflx/ mrpnflx
          mrpnflx = 1
    c
          dxdt = 0.5d0*dxcom/dtcom
          dtdx = 0.5d0*dtcom/dxcom
    c
          call flx1(maxmx,meqn,mbc,mx,ql,maux,auxl,fl)
          call flx1(maxmx,meqn,mbc,mx,qr,maux,auxr,fr)
    c
          do 50 i = 2-mbc, mx+mbc
             do 50 m=1,meqn
                qint(i,m) = 0.5d0*(qr(i-1,m) + ql(i,m)) + 
         &           dtdx*(fr(i-1,m) - fl(i,m))
     50   continue
          do 60 i = 2-mbc, mx+mbc
             do 60 m=1,maux
                auxint(i,m) = 0.5d0*(auxl(i,m) + auxr(i,m)) 
     60   continue
          call flx1(max2,meqn,mbc,mx,qint,maux,auxint,fint)
    c
          do 100 i = 2-mbc, mx+mbc
             ul = 0.5d0*qr(i-1,2)/qr(i-1,1)
             ur = 0.5d0*ql(i  ,2)/ql(i  ,1)
             pl = gamma1*(qr(i-1,3) - 0.5d0*ul**2*qr(i-1,1))
             pr = gamma1*(ql(i  ,3) - 0.5d0*ur**2*ql(i  ,1))
             al = dsqrt(gamma*pl/qr(i-1,1))
             ar = dsqrt(gamma*pr/ql(i  ,1))
             s(i,1) = dmax1(dabs(ul-al),dabs(ur-ar))
             s(i,2) = dmax1(dabs(ul   ),dabs(ur   ))
             s(i,3) = dmax1(dabs(ul+al),dabs(ur+ar))
             do 110 mw=1,mwaves
                do 110 m=1,meqn
                   wave(i,m,mw) = 0.d0
     110     continue
             do 100 m=1,meqn
                if (richtmyer) 
         &           fl(i,m) = fint(i,m)
                if (laxfriedrich) 
         &           fl(i,m) = dxdt*(qr(i-1,m) - ql(i,m)) + 
         &           0.5d0*(fr(i-1,m) + fl(i,m))
                if (richtmyer.and.laxfriedrich)
         &           fl(i,m) = 0.5d0*(fl(i,m) + fint(i,m))
     100  continue
    c
          do 120 i = 2-mbc, mx+mbc
             do 120 m=1,meqn
                fr(i,m) = -fl(i,m)
     120  continue
    c
          return
          end
    c
    

<