c c ========================================================= subroutine rp1eu(maxmx,meqn,mwaves,mbc,mx,ql,qr,maux, & auxl,auxr,wave,s,amdq,apdq) c ========================================================= c c # solve Riemann problems for the 1D Euler equations using Roe's c # approximate Riemann solver. c c # On input, ql contains the state vector at the left edge of each cell c # qr contains the state vector at the right edge of each cell c c # On output, wave contains the waves, c # s the speeds, c # amdq the left-going flux difference A^- \Delta q c # apdq the right-going flux difference A^+ \Delta q c c # Note that the i'th Riemann problem has left state qr(i-1,:) c # and right state ql(i,:) c # From the basic routines, this routine is called with ql = qr c c Author: Ralf Deiterding c implicit double precision (a-h,o-z) c dimension wave(1-mbc:maxmx+mbc, meqn, mwaves) dimension s(1-mbc:maxmx+mbc, mwaves) dimension ql(1-mbc:maxmx+mbc, meqn) dimension qr(1-mbc:maxmx+mbc, meqn) dimension auxl(1-mbc:maxmx+mbc, maux) dimension auxr(1-mbc:maxmx+mbc, maux) dimension apdq(1-mbc:maxmx+mbc, meqn) dimension amdq(1-mbc:maxmx+mbc, meqn) c c # local storage c --------------- parameter (max2 = 100002) !# assumes at most 100000 grid points with mbc=2 dimension u(-1:max2), enth(-1:max2), a(-1:max2), smax(-1:max2) dimension delta(3), fl(-1:max2,3), fr(-1:max2,3) logical efix, hll, roe, hllfix common /param/ gamma,gamma1 c data efix /.true./ !# use entropy fix for transonic rarefactions data hll /.true./ !# use HLL solver if unphysical values occur data roe /.true./ !# use Roe solver c c # Riemann solver returns flux differences c ------------ common /rpnflx/ mrpnflx mrpnflx = 1 c if (-1.gt.1-mbc .or. max2 .lt. maxmx+mbc) then write(6,*) 'need to increase max2 in rp' stop endif c c # Compute Roe-averaged quantities: c do 20 i=2-mbc,mx+mbc rhsqrtl = dsqrt(qr(i-1,1)) rhsqrtr = dsqrt(ql(i,1)) ul = qr(i-1,2)/qr(i-1,1) ur = ql(i ,2)/ql(i ,1) pl = gamma1*(qr(i-1,3) - 0.5d0*(qr(i-1,2)**2)/qr(i-1,1)) pr = gamma1*(ql(i ,3) - 0.5d0*(ql(i ,2)**2)/ql(i ,1)) al = dsqrt(gamma*pl/qr(i-1,1)) ar = dsqrt(gamma*pr/ql(i ,1)) rhsq2 = rhsqrtl + rhsqrtr u(i) = (qr(i-1,2)/rhsqrtl + ql(i,2)/rhsqrtr) / rhsq2 enth(i) = (((qr(i-1,3)+pl)/rhsqrtl & + (ql(i,3)+pr)/rhsqrtr)) / rhsq2 a2 = gamma1*(enth(i) - .5d0*u(i)**2) a(i) = dsqrt(a2) smax(i) = dmax1(dmax1(dabs(ur-ar-(ul-al)),dabs(ur-ul)), & dabs(ur+ar-(ul+al))) 20 continue c c do 30 i=2-mbc,mx+mbc c c # find a1 thru a3, the coefficients of the 3 eigenvectors: c delta(1) = ql(i,1) - qr(i-1,1) delta(2) = ql(i,2) - qr(i-1,2) delta(3) = ql(i,3) - qr(i-1,3) a2 = gamma1/a(i)**2 * ((enth(i)-u(i)**2)*delta(1) & + u(i)*delta(2) - delta(3)) a3 = (delta(2) + (a(i)-u(i))*delta(1) - a(i)*a2) / (2.d0*a(i)) a1 = delta(1) - a2 - a3 c c # Compute the waves. c wave(i,1,1) = a1 wave(i,2,1) = a1*(u(i)-a(i)) wave(i,3,1) = a1*(enth(i) - u(i)*a(i)) s(i,1) = u(i)-a(i) c wave(i,1,2) = a2 wave(i,2,2) = a2*u(i) wave(i,3,2) = a2*0.5d0*u(i)**2 s(i,2) = u(i) c wave(i,1,3) = a3 wave(i,2,3) = a3*(u(i)+a(i)) wave(i,3,3) = a3*(enth(i)+u(i)*a(i)) s(i,3) = u(i)+a(i) 30 continue c c # compute fluxes as c # F(Ur,Ul) = 0.5*( f(Ur)+f(Ul) - |A|(Ur-Ul) ) c -------------------------- c call flx1(maxmx,meqn,mbc,mx,qr,maux,auxr,apdq) call flx1(maxmx,meqn,mbc,mx,ql,maux,auxl,amdq) c do 35 i = 1-mbc, mx+mbc do 35 m=1,meqn fl(i,m) = amdq(i,m) fr(i,m) = apdq(i,m) 35 continue c if (roe) then do 40 i = 2-mbc, mx+mbc do 40 m=1,meqn amdq(i,m) = 0.5d0*(fl(i,m)+fr(i-1,m)) 40 continue c do 50 i = 2-mbc, mx+mbc do 50 m=1,meqn sw = 0.d0 do 60 mw=1,mwaves sl = dabs(s(i,mw)) if (efix.and.dabs(s(i,mw)).lt.smax(i).and.mw.ne.2) & sl = s(i,mw)**2/(2.d0*smax(i))+0.5d0*smax(i) sw = sw + sl*wave(i,m,mw) 60 continue amdq(i,m) = amdq(i,m) - 0.5d0*sw 50 continue endif c if (hll) then do 55 i = 2-mbc, mx+mbc hllfix = .false. if (.not.roe) hllfix = .true. c rhol = qr(i-1,1) + wave(i,1,1) rhoul = qr(i-1,2) + wave(i,2,1) El = qr(i-1,3) + wave(i,3,1) pl = gamma1*(El - 0.5d0*rhoul**2/rhol) if (rhol.le.0.d0.or.pl.le.0.d0) hllfix = .true. c rhor = ql(i,1) - wave(i,1,3) rhour = ql(i,2) - wave(i,2,3) Er = ql(i,3) - wave(i,3,3) pr = gamma1*(Er - 0.5d0*rhour**2/rhor) if (rhor.le.0.d0.or.pr.le.0.d0) hllfix = .true. c if (hllfix) then c if (roe) write (6,*) 'Switching to HLL in',i c rl = qr(i-1,1) ul = qr(i-1,2)/rl pl = gamma1*(qr(i-1,3) - 0.5d0*qr(i-1,2)**2/rl) al = dsqrt(gamma*pl/rl) c rr = ql(i ,1) ur = ql(i ,2)/rr pr = gamma1*(ql(i ,3) - 0.5d0*ql(i ,2)**2/rr) ar = dsqrt(gamma*pr/rr) c sl = dmin1(ul-al,ur-ar) sr = dmax1(ul+al,ur+ar) c do m=1,meqn if (sl.ge.0.d0) amdq(i,m) = fr(i-1,m) if (sr.le.0.d0) amdq(i,m) = fl(i,m) if (sl.lt.0.d0.and.sr.gt.0.d0) & amdq(i,m) = (sr*fr(i-1,m) - sl*fl(i,m) + & sl*sr*(ql(i,m)-qr(i-1,m)))/ (sr-sl) enddo s(i,1) = sl s(i,2) = 0.d0 s(i,3) = sr endif 55 continue endif c do 80 i = 2-mbc, mx+mbc do 80 m=1,meqn apdq(i,m) = -amdq(i,m) 80 continue c return end c