• VTF
  • FSI
  • AMROC
  • SFC
  • Motion
  • STLIB
  • Main Page
  • src/1d/equations/acoustics/rp/rp1acv.f

    
    c
    c
    c     =====================================================
          subroutine rp1acv(maxmx,meqn,mwaves,mbc,mx,ql,qr,maux,
         &                  auxl,auxr,wave,s,amdq,apdq)
    c     =====================================================
    c
    c     # Riemann solver for the acoustics equations in 1d, with
    c     #  variable coefficients (heterogeneous media)
    c
    c     # auxl(i,1) should contain the density rho in cell i
    c     # auxl(i,2) should contain the sound speed c in cell i
    c
    c     # On input, ql contains the state vector at the left edge of each cell
    c     #           qr contains the state vector at the right edge of each cell
    c
    c     # On output, wave contains the waves,
    c     #            s the speeds,
    c     #
    c     #            amdq = A^- Delta q, 
    c     #            apdq = A^+ Delta q,
    c     #                   the decomposition of the flux difference
    c     #                       f(qr(i-1)) - f(ql(i))
    c     #                   into leftgoing and rightgoing parts respectively.
    c     #
    c
    c     # Note that the i'th Riemann problem has left state qr(i-1,:)
    c     #                                    and right state ql(i,:)
    c     # From the basic clawpack routines, this routine is called with ql = qr
    c
    c
          implicit double precision (a-h,o-z)
    c
          dimension auxl(1-mbc:maxmx+mbc, maux)
          dimension auxr(1-mbc:maxmx+mbc, maux)
          dimension wave(1-mbc:maxmx+mbc, meqn, mwaves)
          dimension    s(1-mbc:maxmx+mbc, mwaves)
          dimension   ql(1-mbc:maxmx+mbc, meqn)
          dimension   qr(1-mbc:maxmx+mbc, meqn)
          dimension apdq(1-mbc:maxmx+mbc, meqn)
          dimension amdq(1-mbc:maxmx+mbc, meqn)
          common /comlim/ mylim,mrplim(2)
    c
    c     local arrays
    c     ------------
          dimension delta(2)
    c
    c
    c     # split the jump in q at each interface into waves
    c
    c     # find a1 and a2, the coefficients of the 2 eigenvectors:
          do 20 i = 2-mbc, mx+mbc
             delta(1) = ql(i,1) - qr(i-1,1)
             delta(2) = ql(i,2) - qr(i-1,2)
    
    c        # impedances:
             zi = auxl(i,1)*auxl(i,2)
             zim = auxl(i-1,1)*auxl(i-1,2)
    c
             a1 = (-delta(1) + zi*delta(2)) / (zim + zi)
             a2 =  (delta(1) + zim*delta(2)) / (zim + zi)
    c
    c        # Compute the waves.
    c
             wave(i,1,1) = -a1*zim
             wave(i,2,1) = a1
             s(i,1) = -auxl(i-1,2)
    c
             wave(i,1,2) = a2*zi
             wave(i,2,2) = a2
             s(i,2) = auxl(i,2)
    c
       20    continue
    c
    c
    c     # compute the leftgoing and rightgoing fluctuations:
    c     # Note s(i,1) < 0   and   s(i,2) > 0.
    c
          do 220 m=1,meqn
             do 220 i = 2-mbc, mx+mbc
                amdq(i,m) = s(i,1)*wave(i,m,1)
                apdq(i,m) = s(i,2)*wave(i,m,2)
      220       continue
    c
          return
          end
    

<