c c Boundary conditions for ghost-fluid methods. c c Copyright (C) 2003-2007 California Institute of Technology c Ralf Deiterding, ralf@cacr.caltech.edu c c ----------------------------------------------------- c Internal reflecting physical boundary conditions c for Euler equations c ----------------------------------------------------- c c Transformation of vector of conserved quantities c into primitives (rho,u,v,w,p) c c ===================================================== subroutine it3eurfl(mx,my,mz,meqn,q,qt) c ===================================================== implicit none c common /param/ gamma,gamma1 double precision gamma,gamma1 integer i, j, k, mx, my, mz, meqn double precision q(meqn,mx,my,mz), qt(meqn,mx,my,mz) c do 10 k = 1, mz do 10 j = 1, my do 10 i = 1, mx qt(1,i,j,k) = q(1,i,j,k) qt(2,i,j,k) = q(2,i,j,k)/q(1,i,j,k) qt(3,i,j,k) = q(3,i,j,k)/q(1,i,j,k) qt(4,i,j,k) = q(4,i,j,k)/q(1,i,j,k) qt(5,i,j,k) = gamma1*(q(5,i,j,k) - 0.5d0*(q(2,i,j,k)**2 + & q(3,i,j,k)**2 + q(4,i,j,k)**2)/q(1,i,j,k)) 10 continue c return end c c ----------------------------------------------------- c c Construction of reflective boundary conditions from c mirrored primitive values and application in c conservative form in local patch c c ===================================================== subroutine ip3eurfl(q,mx,my,mz,lb,ub,meqn,nc,idx, & qex,xc,phi,vn,maux,auex,dx,time) c ===================================================== implicit none common /param/ gamma,gamma1 double precision gamma,gamma1 integer mx, my, mz, meqn, maux, nc, idx(3,nc), lb(3), & ub(3) double precision q(meqn,mx,my,mz), qex(meqn,nc), xc(3,nc), & phi(nc), vn(3,nc), auex(maux,nc), dx(3), time c c Local variables c integer i, j, k, n, stride, getindx double precision rho, u, v, w, p, vl c stride = (ub(1) - lb(1))/(mx-1) c do 100 n = 1, nc i = getindx(idx(1,n), lb(1), stride) j = getindx(idx(2,n), lb(2), stride) k = getindx(idx(3,n), lb(3), stride) c rho = qex(1,n) u = -qex(2,n) v = -qex(3,n) w = -qex(4,n) p = qex(5,n) c c # Add boundary velocities if available if (maux.ge.3) then u = u + auex(1,n) v = v + auex(2,n) w = w + auex(3,n) endif c c # Construct normal velocity vector c # Tangential velocity remains unchanged vl = 2.d0*(u*vn(1,n)+v*vn(2,n)+w*vn(3,n)) u = qex(2,n) + vl*vn(1,n) v = qex(3,n) + vl*vn(2,n) w = qex(4,n) + vl*vn(3,n) c q(1,i,j,k) = rho q(2,i,j,k) = u*rho q(3,i,j,k) = v*rho q(4,i,j,k) = w*rho q(5,i,j,k) = p/gamma1 + 0.5d0*rho*(u**2 + v**2 + w**2) c 100 continue c return end c c ----------------------------------------------------- c c Injection of conservative extrapolated values in local patch c c ===================================================== subroutine ip3euex(q,mx,my,mz,lb,ub,meqn,nc,idx, & qex,xc,phi,vn,maux,auex,dx,time) c ===================================================== c implicit none c common /param/ gamma,gamma1 double precision gamma,gamma1 integer mx, my, mz, meqn, maux, nc, idx(3,nc), lb(3), & ub(3) double precision q(meqn,mx,my,mz), qex(meqn,nc), xc(3,nc), & phi(nc), vn(3,nc), auex(maux,nc), dx(3), time c c Local variables c integer i, j, k, n, stride, getindx double precision rho, u, v, w, p, vl c stride = (ub(1) - lb(1))/(mx-1) c do 100 n = 1, nc i = getindx(idx(1,n), lb(1), stride) j = getindx(idx(2,n), lb(2), stride) k = getindx(idx(3,n), lb(3), stride) c rho = qex(1,n) u = qex(2,n) v = qex(3,n) w = qex(4,n) p = qex(5,n) c c # Prescribe normal velocity vector vl = u*vn(1,n)+v*vn(2,n)+w*vn(3,n) u = vl*vn(1,n) v = vl*vn(2,n) w = vl*vn(3,n) c q(1,i,j,k) = rho q(2,i,j,k) = u*rho q(3,i,j,k) = v*rho q(4,i,j,k) = w*rho q(5,i,j,k) = p/gamma1 + 0.5d0*rho*(u**2 + v**2 + w**2) c 100 continue c return end c