• VTF
  • FSI
  • AMROC
  • SFC
  • Motion
  • STLIB
  • Main Page
  • src/3d/equations/acoustics/rp/ip3acrfl.f

    c
    c     Boundary conditions for ghost-fluid methods.
    c 
    c     Copyright (C) 2009 Oak Ridge National Laboratory
    c     Ralf Deiterding, ralf@cacr.caltech.edu
    c
    c     -----------------------------------------------------
    c
    c     Construction of reflective boundary conditions from
    c     mirrored values and application in local patch
    c
    c     =====================================================
          subroutine ip3acrfl(q,mx,my,mz,lb,ub,meqn,nc,idx,
         &     qex,xc,phi,vn,maux,auex,dx,time)
    c     =====================================================
    c
          implicit none
    c
          integer   mx, my, mz, meqn, maux, nc, idx(3,nc), lb(3), 
         &     ub(3)
          double precision    q(meqn,mx,my,mz), qex(meqn,nc), xc(3,nc), 
         &     phi(nc), vn(3,nc), auex(maux,nc), dx(3), time
    c
    c     Local variables
    c
          integer   i, j, k, n, stride, getindx
          double precision    p, u, v, w, vl
    c
          stride = (ub(1) - lb(1))/(mx-1)
    c
          do 100 n = 1, nc
    
             i = getindx(idx(1,n), lb(1), stride)
             j = getindx(idx(2,n), lb(2), stride)
             k = getindx(idx(3,n), lb(3), stride)
    c
             p =  qex(1,n)
             u = -qex(2,n)       
             v = -qex(3,n)
             w = -qex(4,n)
    c
    c        # Add boundary velocities if available
             if (maux.ge.3) then
                u = u + auex(1,n)
                v = v + auex(2,n)
                w = w + auex(3,n)
             endif
    c
    c        # Construct normal velocity vector
    c        # Tangential velocity remains unchanged
             vl = 2.d0*(u*vn(1,n)+v*vn(2,n)+w*vn(3,n))
             u = qex(2,n) + vl*vn(1,n) 
             v = qex(3,n) + vl*vn(2,n) 
             w = qex(4,n) + vl*vn(3,n) 
    c
             q(1,i,j,k) = p
             q(2,i,j,k) = u
             q(3,i,j,k) = v
             q(4,i,j,k) = w
    c
     100  continue
    c
          return
          end
    c
    c     -----------------------------------------------------
    c
    c     Injection of extrapolated values in local patch
    c
    c     =====================================================
          subroutine ip3acex(q,mx,my,mz,lb,ub,meqn,nc,idx,
         &     qex,xc,phi,vn,maux,auex,dx,time)
    c     =====================================================
    c
          implicit none
    c
          integer   mx, my, mz, meqn, maux, nc, idx(3,nc), lb(3), 
         &     ub(3)
          double precision    q(meqn,mx,my,mz), qex(meqn,nc), xc(3,nc), 
         &     phi(nc), vn(3,nc), auex(maux,nc), dx(3), time
    c
    c     Local variables
    c
          integer   i, j, k, n, stride, getindx
          double precision    p, u, v, w, vl
    c
          stride = (ub(1) - lb(1))/(mx-1)
    c
          do 100 n = 1, nc
    
             i = getindx(idx(1,n), lb(1), stride)
             j = getindx(idx(2,n), lb(2), stride)
             k = getindx(idx(3,n), lb(3), stride)
    c
             p = qex(1,n)
             u = qex(2,n)       
             v = qex(3,n)
             w = qex(4,n)
    c
    c        # Prescribe normal velocity vector
             vl = u*vn(1,n)+v*vn(2,n)+w*vn(3,n)
             u = vl*vn(1,n) 
             v = vl*vn(2,n) 
             w = vl*vn(3,n) 
    c
             q(1,i,j,k) = p
             q(2,i,j,k) = u
             q(3,i,j,k) = v
             q(4,i,j,k) = w
    c
     100  continue
    c
          return
          end
    c
    

<