c c Boundary conditions for ghost-fluid methods. c c Copyright (C) 2003-2007 California Institute of Technology c Ralf Deiterding, ralf@cacr.caltech.edu c c ----------------------------------------------------- c Internal reflecting physical boundary conditions c for Euler equations for multiple thermally perfect species c ----------------------------------------------------- c c Transformation of vector of conserved quantities c into (rho1,...,rhoK,u,v,p,T,...) c c ===================================================== subroutine it2eurhokrfl(mx,my,meqn,q,qt) c ===================================================== c implicit double precision(a-h,o-z) include "ck.i" c integer i, j, k, mx, my, meqn double precision q(meqn,mx,my), qt(meqn,mx,my) c do 10 j = 1, my do 10 i = 1, mx rho = 0.d0 rhoW = 0.d0 do k = 1, Nsp rho = rho + q(k,i,j) rhoW = rhoW + q(k,i,j)/Wk(k) qt(k,i,j) = q(k,i,j) enddo qt(Nsp+1,i,j) = q(Nsp+1,i,j)/rho qt(Nsp+2,i,j) = q(Nsp+2,i,j)/rho qt(Nsp+3,i,j) = rhoW*RU*q(Nsp+4,i,j) do k = Nsp+4, meqn qt(k,i,j) = q(k,i,j) enddo 10 continue c return end c c ----------------------------------------------------- c c Construction of reflective boundary conditions from c mirrored primitive values and application in c conservative form in local patch c c ===================================================== subroutine ip2eurhokrfl(q,mx,my,lb,ub,meqn,nc,idx, & qex,xc,phi,vn,maux,auex,dx,time) c ===================================================== c implicit double precision(a-h,o-z) include "ck.i" c integer mx, my, meqn, maux, nc, idx(2,nc), lb(2), ub(2) double precision q(meqn, mx, my), qex(meqn,nc), xc(2,nc), & phi(nc), vn(2,nc), auex(maux,nc), dx(2), time c c Local variables c integer i, j, k, n, stride, getindx double precision rho, rhoW, u, v, vl, p, T c stride = (ub(1) - lb(1))/(mx-1) c do 100 n = 1, nc i = getindx(idx(1,n), lb(1), stride) j = getindx(idx(2,n), lb(2), stride) c rho = 0.d0 rhoW = 0.d0 do k = 1, Nsp rho = rho + qex(k,n) rhoW = rhoW + qex(k,n)/Wk(k) q(k,i,j) = qex(k,n) enddo c u = -qex(Nsp+1,n) v = -qex(Nsp+2,n) p = qex(Nsp+3,n) T = p/(rhoW*RU) c c # Add boundary velocities if available if (maux.ge.2) then u = u + auex(1,n) v = v + auex(2,n) endif c c # Construct normal velocity vector c # Tangential velocity remains unchanged vl = 2.d0*(u*vn(1,n)+v*vn(2,n)) u = qex(Nsp+1,n) + vl*vn(1,n) v = qex(Nsp+2,n) + vl*vn(2,n) c q(Nsp+1,i,j) = u*rho q(Nsp+2,i,j) = v*rho q(Nsp+3,i,j) = rho*0.5d0*(u**2+v**2) + & avgtabip(T,q(1,i,j),hms,Nsp) - p q(Nsp+4,i,j) = T c do k = Nsp+5, meqn q(k,i,j) = qex(k,n) enddo c 100 continue c return end c c c ----------------------------------------------------- c c Injection of conservative extrapolated values in local patch c c ===================================================== subroutine ip2eurhokex(q,mx,my,lb,ub,meqn,nc,idx, & qex,xc,phi,vn,maux,auex,dx,time) c ===================================================== c implicit double precision(a-h,o-z) include "ck.i" c integer mx, my, meqn, maux, nc, idx(2,nc), lb(2), ub(2) double precision q(meqn, mx, my), qex(meqn,nc), xc(2,nc), & phi(nc), vn(2,nc), auex(maux,nc), dx(2), time c c Local variables c integer i, j, n, stride, getindx double precision rho, rhoW, u, v, vl, p, T c stride = (ub(1) - lb(1))/(mx-1) c do 100 n = 1, nc i = getindx(idx(1,n), lb(1), stride) j = getindx(idx(2,n), lb(2), stride) c rho = 0.d0 rhoW = 0.d0 do k = 1, Nsp rho = rho + qex(k,n) rhoW = rhoW + qex(k,n)/Wk(k) q(k,i,j) = qex(k,n) enddo c u = qex(Nsp+1,n) v = qex(Nsp+2,n) p = qex(Nsp+3,n) T = p/(rhoW*RU) c c # Prescribe normal velocity vector vl = u*vn(1,n)+v*vn(2,n) u = vl*vn(1,n) v = vl*vn(2,n) c q(Nsp+1,i,j) = u*rho q(Nsp+2,i,j) = v*rho q(Nsp+3,i,j) = rho*0.5d0*(u**2+v**2) + & avgtabip(T,q(1,i,j),hms,Nsp) - p q(Nsp+4,i,j) = T c do k = Nsp+5, meqn q(k,i,j) = qex(k,n) enddo c 100 continue c return end c