• VTF
  • FSI
  • AMROC
  • SFC
  • Motion
  • STLIB
  • Main Page
  • src/2d/equations/euler/rprhok/ip2eurhokrfl.f

    c
    c     Boundary conditions for ghost-fluid methods.
    c 
    c     Copyright (C) 2003-2007 California Institute of Technology
    c     Ralf Deiterding, ralf@cacr.caltech.edu
    c
    c     -----------------------------------------------------
    c     Internal reflecting physical boundary conditions
    c     for Euler equations for multiple thermally perfect species
    c     -----------------------------------------------------
    c
    c     Transformation of vector of conserved quantities
    c     into (rho1,...,rhoK,u,v,p,T,...)
    c
    c     =====================================================
          subroutine it2eurhokrfl(mx,my,meqn,q,qt)
    c     =====================================================
    c
          implicit double precision(a-h,o-z)
          include  "ck.i"    
    c     
          integer i, j, k, mx, my, meqn
          double precision q(meqn,mx,my), qt(meqn,mx,my)
    c
          do 10 j = 1, my
             do 10 i = 1, mx 
                rho  = 0.d0
                rhoW = 0.d0
                do k = 1, Nsp
                   rho  = rho  + q(k,i,j)
                   rhoW = rhoW + q(k,i,j)/Wk(k)
                   qt(k,i,j) = q(k,i,j)
                enddo
                qt(Nsp+1,i,j) = q(Nsp+1,i,j)/rho
                qt(Nsp+2,i,j) = q(Nsp+2,i,j)/rho
                qt(Nsp+3,i,j) = rhoW*RU*q(Nsp+4,i,j)
                do k = Nsp+4, meqn
                   qt(k,i,j) = q(k,i,j)
                enddo
     10   continue
    c         
          return
          end
    c
    c     -----------------------------------------------------
    c
    c     Construction of reflective boundary conditions from
    c     mirrored primitive values and application in
    c     conservative form in local patch
    c
    c     =====================================================
          subroutine ip2eurhokrfl(q,mx,my,lb,ub,meqn,nc,idx,
         &     qex,xc,phi,vn,maux,auex,dx,time)
    c     =====================================================
    c
          implicit double precision(a-h,o-z)
          include  "ck.i"    
    c
          integer mx, my, meqn, maux, nc, idx(2,nc), lb(2), ub(2)
          double precision q(meqn, mx, my), qex(meqn,nc), xc(2,nc), 
         &     phi(nc), vn(2,nc), auex(maux,nc), dx(2), time
    c
    c     Local variables
    c
          integer i, j, k, n, stride, getindx
          double precision rho, rhoW, u, v, vl, p, T
    c
          stride = (ub(1) - lb(1))/(mx-1)
    c
          do 100 n = 1, nc
    
             i = getindx(idx(1,n), lb(1), stride)
             j = getindx(idx(2,n), lb(2), stride)
    c
             rho  = 0.d0
             rhoW = 0.d0
             do k = 1, Nsp
                rho  = rho  + qex(k,n)
                rhoW = rhoW + qex(k,n)/Wk(k)
                q(k,i,j) = qex(k,n)
             enddo
    c            
             u = -qex(Nsp+1,n)       
             v = -qex(Nsp+2,n)
             p =  qex(Nsp+3,n)
             T =  p/(rhoW*RU)
    c
    c        # Add boundary velocities if available
             if (maux.ge.2) then
                u = u + auex(1,n)
                v = v + auex(2,n)
             endif
    c
    c        # Construct normal velocity vector
    c        # Tangential velocity remains unchanged
             vl = 2.d0*(u*vn(1,n)+v*vn(2,n))
             u = qex(Nsp+1,n) + vl*vn(1,n) 
             v = qex(Nsp+2,n) + vl*vn(2,n) 
    c
             q(Nsp+1,i,j) = u*rho
             q(Nsp+2,i,j) = v*rho
             q(Nsp+3,i,j) = rho*0.5d0*(u**2+v**2) + 
         &        avgtabip(T,q(1,i,j),hms,Nsp) - p
             q(Nsp+4,i,j) = T
    c
             do k = Nsp+5, meqn
                q(k,i,j) = qex(k,n)
             enddo
    c
     100  continue
    c
          return
          end
    c
    c
    c     -----------------------------------------------------
    c
    c     Injection of conservative extrapolated values in local patch
    c
    c     =====================================================
          subroutine ip2eurhokex(q,mx,my,lb,ub,meqn,nc,idx,
         &     qex,xc,phi,vn,maux,auex,dx,time)
    c     =====================================================
    c
          implicit double precision(a-h,o-z)
          include  "ck.i"    
    c
          integer mx, my, meqn, maux, nc, idx(2,nc), lb(2), ub(2)
          double precision q(meqn, mx, my), qex(meqn,nc), xc(2,nc), 
         &     phi(nc), vn(2,nc), auex(maux,nc), dx(2), time
    c
    c     Local variables
    c
          integer i, j, n, stride, getindx
          double precision rho, rhoW, u, v, vl, p, T
    c
          stride = (ub(1) - lb(1))/(mx-1)
    c
          do 100 n = 1, nc
    
             i = getindx(idx(1,n), lb(1), stride)
             j = getindx(idx(2,n), lb(2), stride)
    c
             rho  = 0.d0
             rhoW = 0.d0
             do k = 1, Nsp
                rho  = rho  + qex(k,n)
                rhoW = rhoW + qex(k,n)/Wk(k)
                q(k,i,j) = qex(k,n)
             enddo
    c            
             u = qex(Nsp+1,n)       
             v = qex(Nsp+2,n)
             p = qex(Nsp+3,n)
             T = p/(rhoW*RU)
    c
    c        # Prescribe normal velocity vector
             vl = u*vn(1,n)+v*vn(2,n)
             u = vl*vn(1,n) 
             v = vl*vn(2,n) 
    c
             q(Nsp+1,i,j) = u*rho
             q(Nsp+2,i,j) = v*rho
             q(Nsp+3,i,j) = rho*0.5d0*(u**2+v**2) + 
         &        avgtabip(T,q(1,i,j),hms,Nsp) - p
             q(Nsp+4,i,j) = T
    c
             do k = Nsp+5, meqn
                q(k,i,j) = qex(k,n)
             enddo
    c
     100  continue
    c
          return
          end
    c
    

<