• VTF
  • FSI
  • AMROC
  • SFC
  • Motion
  • STLIB
  • Main Page
  • src/3d/equations/euler/rpm/flgout3meu.f

    c
    c     ==========================================================
          subroutine flgout3meu(q,mx,my,mz,lb,ub,qo,mxo,myo,mzo,lbo,ubo,
         &     lbr,ubr,shaper,meqn,nc,t)
    c     ==========================================================
    c
    c     # Computes primitives for two-component Euler equations 
    c     # for output and flagging.
    c
    c     # Copyright (C) 2002 Ralf Deiterding
    c     # Brandenburgische Universitaet Cottbus
    c
    c     # Copyright (C) 2003-2007 California Institute of Technology
    c     # Ralf Deiterding, ralf@cacr.caltech.edu
    c
          implicit double precision(a-h,o-z)
          common /PhysData/  Wk, g, pinf, RU, PA
          dimension Wk(2), g(2), pinf(2)
    c
          integer meqn, mx, my, mz, mxo, myo, mzo
          dimension q(meqn,mx,my,mz), qo(mxo,myo,mzo)
          dimension Xk(2), cap(2)
    c
          integer  lb(3), ub(3), lbo(3), ubo(3), lbr(3), ubr(3), shaper(3), 
         &     mresult, stride, imin(3), imax(3), i, getindx, d
    c
          stride = (ub(1) - lb(1))/(mx-1)
          do 5 d = 1, 3
             imin(d) = max(lb(d), lbr(d))
             imax(d) = min(ub(d), ubr(d))
    c
             if (mod(imin(d)-lb(d),stride) .ne. 0) then
                imin(d) = imin(d) + stride - mod(imin(d)-lb(d),stride) 
             endif
             imin(d) = getindx(imin(d), lb(d), stride)  
    c
             if (mod(imax(d)-lb(d),stride) .ne. 0) then
                imax(d) = imax(d) - mod(imax(d)-lb(d),stride) 
             endif
             imax(d) = getindx(imax(d), lb(d), stride)  
     5    continue
    c
          cap(1) = 1.d0 / (g(1)-1.d0)
          cap(2) = 1.d0 / (g(2)-1.d0)
          do 10 i = imin(1), imax(1)
             do 10 j = imin(2), imax(2)  
                do 10 k = imin(3), imax(3)
    c
                   if (nc.gt.5) then
                      gamma1 = 1.d0 / q(6,i,j,k)
                      gamma = gamma1 + 1.d0
                      p = gamma1*(q(5,i,j,k) - 0.5d0*(q(2,i,j,k)**2+ 
         &                 q(3,i,j,k)**2+q(4,i,j,k)**2)/q(1,i,j,k) - 
         &                 q(7,i,j,k))
                      pin = q(7,i,j,k)*gamma1/gamma
                      Xk(1) = (q(6,i,j,k)-cap(2)) / (cap(1)-cap(2))
                      Xk(2) = 1.d0-Xk(1)
                      W = Xk(1)*Wk(1) + Xk(2)*Wk(2)
                   endif
    c
    c              # Density
                   if (nc.eq.1) qo(i,j,k) = q(1,i,j,k)
    c              # Velocity u
                   if (nc.eq.2) qo(i,j,k) = q(2,i,j,k)/q(1,i,j,k)
    c              # Velocity v
                   if (nc.eq.3) qo(i,j,k) = q(3,i,j,k)/q(1,i,j,k)
    c              # Velocity w
                   if (nc.eq.4) qo(i,j,k) = q(4,i,j,k)/q(1,i,j,k)
    c              # Total energy density
                   if (nc.eq.5) qo(i,j,k) = q(5,i,j,k)
    c              # Temperature 
                   if (nc.eq.6) qo(i,j,k) = p/(q(1,i,j,k)*RU/W)
    c              # Pressure
                   if (nc.eq.7) qo(i,j,k) = p
    c              # Gamma 
                   if (nc.eq.8) qo(i,j,k) = gamma
    c              # Y1
                   if (nc.eq.9) qo(i,j,k) = Xk(1)*Wk(1)/W
    c              # Y2
                   if (nc.eq.10) qo(i,j,k) = Xk(2)*Wk(2)/W
    c              # pinf
                   if (nc.eq.11) qo(i,j,k) = pin
    c              # Speed of sound
                   if (nc.eq.12) qo(i,j,k) = dsqrt(gamma*(p+pin)/
         &              q(1,i,j,k))
    c
     10      continue         
    c
          return
          end
    

<