c
c ==========================================================
subroutine flgout3eu(q,mx,my,mz,lb,ub,qo,mxo,myo,mzo,lbo,ubo,
& lbr,ubr,shaper,meqn,nc,t)
c ==========================================================
c
c # Computes primitives for Euler equations for output
c # and flagging.
c
c # Adaption based on pressure is often more intuitive.
c
c # Copyright (C) 2002 Ralf Deiterding
c # Brandenburgische Universitaet Cottbus
c
c # Copyright (C) 2003-2007 California Institute of Technology
c # Ralf Deiterding, ralf@cacr.caltech.edu
c
implicit double precision(a-h,o-z)
common /param/ gamma,gamma1
common /PhysData/ Wk, RU, PA
c
integer meqn, mx, my, mz, mxo, myo, mzo
dimension q(meqn,mx,my,mz), qo(mxo,myo,mzo)
c
integer lb(3), ub(3), lbo(3), ubo(3), lbr(3), ubr(3), shaper(3),
& mresult, stride, imin(3), imax(3), i, getindx, d
c
stride = (ub(1) - lb(1))/(mx-1)
do 5 d = 1, 3
imin(d) = max(lb(d), lbr(d))
imax(d) = min(ub(d), ubr(d))
if (mod(imin(d)-lb(d),stride) .ne. 0) then
imin(d) = imin(d) + stride - mod(imin(d)-lb(d),stride)
endif
imin(d) = getindx(imin(d), lb(d), stride)
if (mod(imax(d)-lb(d),stride) .ne. 0) then
imax(d) = imax(d) - mod(imax(d)-lb(d),stride)
endif
imax(d) = getindx(imax(d), lb(d), stride)
5 continue
do 10 i = imin(1), imax(1)
do 10 j = imin(2), imax(2)
do 10 k = imin(3), imax(3)
c # Density
if (nc.eq.1) qo(i,j,k) = q(1,i,j,k)
c # Velocity u
if (nc.eq.2) qo(i,j,k) = q(2,i,j,k)/q(1,i,j,k)
c # Velocity v
if (nc.eq.3) qo(i,j,k) = q(3,i,j,k)/q(1,i,j,k)
c # Velocity w
if (nc.eq.4) qo(i,j,k) = q(4,i,j,k)/q(1,i,j,k)
c # Total energy density
if (nc.eq.5) qo(i,j,k) = q(5,i,j,k)
c # Temperature
if (nc.eq.6) qo(i,j,k) = (Wk*gamma1*(q(5,i,j,k)-0.5d0*
& (q(2,i,j,k)**2+q(3,i,j,k)**2+q(4,i,j,k)**2)/
& q(1,i,j,k)))/(RU*q(1,i,j,k))
c # Pressure
if (nc.eq.7) qo(i,j,k) = gamma1*(q(5,i,j,k)-0.5d0*
& (q(2,i,j,k)**2+q(3,i,j,k)**2+q(4,i,j,k)**2)/
& q(1,i,j,k))
c # Gamma
if (nc.eq.8) qo(i,j,k) = gamma
10 continue
return
end