• VTF
  • FSI
  • AMROC
  • SFC
  • Motion
  • STLIB
  • Main Page
  • src/3d/equations/euler/rpm/rpn3meuhllc.f

    c
    c
    c     ==================================================================
          subroutine rpn3meu(ixyz,maxm,meqn,mwaves,mbc,mx,ql,qr,
         &                   maux,auxl,auxr,wave,s,amdq,apdq)
    c     ==================================================================
    c
    c     # Solve Riemann problems for the 3D two-component Euler equations 
    c     # using HLLC. Use flux difference splitting formulation for full
    c     # compatibility to Wave Propagation Method.
    c     
    c     # solve Riemann problems along one slice of data.
    c     # This data is along a slice in the x-direction if ixyz=1
    c     #                               the y-direction if ixyz=2.
    c     #                               the z-direction if ixyz=3.
    c
    c     # On input, ql contains the state vector at the left edge of each cell
    c     #           qr contains the state vector at the right edge of each cell
    c     # On output, wave contains the waves, s the speeds, 
    c     # amdq and apdq the positive and negative flux.
    c
    c     # Note that the i'th Riemann problem has left state qr(i-1,:)
    c     #                                    and right state ql(i,:)
    c     # From the basic clawpack routines, this routine is called with ql = qr
    c
    c     # Copyright (C) 2003-2007 California Institute of Technology
    c     # Ralf Deiterding, ralf@cacr.caltech.edu
    c
          implicit double precision(a-h,o-z)
    c
          dimension wave(1-mbc:maxm+mbc, meqn, mwaves)
          dimension    s(1-mbc:maxm+mbc, mwaves)
          dimension   ql(1-mbc:maxm+mbc, meqn)
          dimension   qr(1-mbc:maxm+mbc, meqn)
          dimension amdq(1-mbc:maxm+mbc, meqn)
          dimension apdq(1-mbc:maxm+mbc, meqn)
          dimension auxl(1-mbc:maxm+mbc, maux, 3)
          dimension auxr(1-mbc:maxm+mbc, maux, 3)
    c
    c     local arrays -- common block comroe is passed to rpt3eum
    c                     
    c     ------------
          parameter (maxmrp = 1005) !# assumes atmost max(mx,my,mz) = 1000 with mbc=5
          parameter (minmrp = -4)   !# assumes at most mbc=5
          dimension qls(5), qrs(5)
          logical roespeed
    c
          common /comroe/ u2v2w2(minmrp:maxmrp),
         &     u(minmrp:maxmrp),v(minmrp:maxmrp),w(minmrp:maxmrp),
         &     enth(minmrp:maxmrp),a(minmrp:maxmrp),g1a2(minmrp:maxmrp),
         &     euv(minmrp:maxmrp),p(minmrp:maxmrp) 
    c
          data roespeed /.false./    !# use Roe average for wave speed estimation 
    c
    c     # Riemann solver returns flux differences
    c     ------------
          common /rpnflx/ mrpnflx
          mrpnflx = 0
    c
          if (minmrp.gt.1-mbc .or. maxmrp .lt. maxm+mbc) then
             write(6,*) 'need to increase maxmrp in rpA'
             stop
          endif
    c
    c     # set mu to point to  the component of the system that corresponds
    c     # to momentum in the direction of this slice, mv and mw to the 
    c     # orthogonal momentums:
    c
          if(ixyz .eq. 1)then
             mu = 2
             mv = 3
             mw = 4
          else if(ixyz .eq. 2)then
             mu = 3
             mv = 4
             mw = 2
          else
             mu = 4
             mv = 2
             mw = 3
          endif
    c
    c     # note that notation for u,v, and w reflects assumption that the 
    c     # Riemann problems are in the x-direction with u in the normal
    c     # direction and v and w in the orthogonal directions, but with the 
    c     # above definitions of mu, mv, and mw the routine also works with 
    c     # ixyz=2 and ixyz=3
    c     # and returns, for example, f0 as the Godunov flux g0 for the
    c     # Riemann problems u_t + g(u)_y = 0 in the y-direction.
    c
    c
    c     # Compute the Roe-averaged variables needed in the Roe solver.
    c     # These are stored in the common block comroe since they are
    c     # later used in routine rpt3eu to do the transverse wave 
    c     # splitting.
    c
          do 10 i = 2-mbc, mx+mbc
             if (qr(i-1,1).le.0.d0.or.ql(i,1).le.0.d0) then 
                write (6,*) 'Unrecoverable error in density',i
                write (6,*) qr(i-1,1),ql(i,1)
                stop
             endif         
    c
             rl = qr(i-1,1)
             ul = qr(i-1,mu)/rl
             vl = qr(i-1,mv)/rl
             wl = qr(i-1,mw)/rl
             El = qr(i-1,5)
             gammal1 = 1.d0/qr(i-1,6)
             gammal = gammal1 + 1.d0
             pinfl = qr(i-1,7)*gammal1/gammal
             pl = (El-0.5d0*(ul**2+vl**2+wl**2)*rl-qr(i-1,7))/qr(i-1,6)
             if (pl+pinfl.le.0.d0.or.gammal.le.0.d0) then 
                write (6,*) 'Unrecoverable error in speed of sound l',i
                write (6,*) pl,pinfl,pl+pinfl,gammal
                stop
             endif
             al = dsqrt(gammal*(pl+pinfl)/rl)
    c     
             rr = ql(i  ,1)
             ur = ql(i  ,mu)/rr
             vr = ql(i  ,mv)/rr
             wr = ql(i  ,mw)/rr
             Er = ql(i  ,5)
             gammar1 = 1.d0/ql(i  ,6)
             gammar = gammar1 + 1.d0
             pinfr = ql(i  ,7)*gammar1/gammar
             pr = (Er-0.5d0*(ur**2+vr**2+wr**2)*rr-ql(i  ,7))/ql(i  ,6)
             if (pr+pinfr.le.0.d0.or.gammar.le.0.d0) then 
                write (6,*) 'Unrecoverable error in speed of sound r',i
                write (6,*) pr,pinfr,pr+pinfr,gammar
                stop
             endif
             ar = dsqrt(gammar*(pr+pinfr)/rr)
    c
             rhsqrtl = dsqrt(qr(i-1,1))
             rhsqrtr = dsqrt(ql(i,1))
             rhsq2 = rhsqrtl + rhsqrtr
             gamma1 = rhsq2 / ( qr(i-1,6)*rhsqrtl + ql(i,6)*rhsqrtr ) 
             xjota = ( pl*qr(i-1,6)*rhsqrtl + pr*ql(i,6)*rhsqrtr ) / rhsq2
             p(i) = xjota*gamma1
    c
             u(i) = (qr(i-1,mu)/rhsqrtl + ql(i,mu)/rhsqrtr) / rhsq2
             v(i) = (qr(i-1,mv)/rhsqrtl + ql(i,mv)/rhsqrtr) / rhsq2
             w(i) = (qr(i-1,mw)/rhsqrtl + ql(i,mw)/rhsqrtr) / rhsq2
             enth(i) = (((qr(i-1,5)+pl)/rhsqrtl 
         &             + (ql(i,5)+pr)/rhsqrtr)) / rhsq2
             u2v2w2(i) = u(i)**2 + v(i)**2 + w(i)**2
             a2 = gamma1*(enth(i) - .5d0*u2v2w2(i))
             a(i) = dsqrt(a2)
             if (a2.le.0.d0) a(i) = dmax1(al,ar)
             g1a2(i) = gamma1 / a2
             euv(i) = enth(i) - u2v2w2(i) 
    c     
             if (roespeed) then
                sl = u(i)-a(i)
                sr = u(i)+a(i)
             else
                sl = dmin1(ul-al,ur-ar)
                sr = dmax1(ul+al,ur+ar)
             endif
             ss = (pr-pl+rl*ul*(sl-ul)-rr*ur*(sr-ur))/
         &        (rl*(sl-ul)-rr*(sr-ur))
    c
             qrs(1)  = rr*(sr-ur)/(sr-ss)
             qrs(mu) = qrs(1)*ss
             qrs(mv) = qrs(1)*vr
             qrs(mw) = qrs(1)*wr
             qrs(5)  = qrs(1)*(Er/rr+
         &        (ss-ur)*(ss+pr/(rr*(sr-ur))))
    c
             qls(1)  = rl*(sl-ul)/(sl-ss)
             qls(mu) = qls(1)*ss
             qls(mv) = qls(1)*vl
             qls(mw) = qls(1)*wl
             qls(5)  = qls(1)*(El/rl+
         &        (ss-ul)*(ss+pl/(rl*(sl-ul))))
    c
             do m=1,5
                wave(i,m,1) = qls(m) - qr(i-1,m)
                wave(i,m,2) = qrs(m) - qls(m)
                wave(i,m,3) = ql(i,m) - qrs(m)
             enddo
             do m=6,7
                wave(i,m,1) = 0.d0
                wave(i,m,2) = ql(i,m) - qr(i-1,m)
                wave(i,m,3) = 0.d0
             enddo
    c
             s(i,1) = sl
             s(i,2) = ss
             s(i,3) = sr
    c
             do m=1,meqn
                amdq(i,m) = 0.d0
                apdq(i,m) = 0.d0
                do mws=1,mwaves
                   if (s(i,mws) .lt. 0.d0) then
                      amdq(i,m) = amdq(i,m) + s(i,mws)*wave(i,m,mws)
                   else
                      apdq(i,m) = apdq(i,m) + s(i,mws)*wave(i,m,mws)
                   endif
                enddo
             enddo
     10   continue
          return
          end
    

<