c c c c ================================================================== subroutine rpn3meu(ixyz,maxm,meqn,mwaves,mbc,mx,ql,qr, & maux,auxl,auxr,wave,s,amdq,apdq) c ================================================================== c c # solve Riemann problems for the 3D two-component c # Euler equations using Roe's approximate Riemann solver. c c # Keh-Ming Shyue "An efficient shock-capturing algorithm for c # compressible multicomponent problems", J. Comput. Phys., Vol. 142, c # pp 208-242, 1998 c c # solve Riemann problems along one slice of data. c # This data is along a slice in the x-direction if ixyz=1 c # the y-direction if ixyz=2. c # the z-direction if ixyz=3. c c # On input, ql contains the state vector at the left edge of each cell c # qr contains the state vector at the right edge of each cell c c # auxl(i,ma,2) contains auxiliary data for cells along this slice, c # where ma=1,maux in the case where maux=method(7) > 0. c # auxl(i,ma,1) and auxl(i,ma,3) contain auxiliary data along c # neighboring slices that generally aren't needed in the rpn3 routine. c c c # On output, wave contains the waves, s the speeds, c # and amdq, apdq the decomposition of the flux difference c # f(qr(i-1)) - f(ql(i)) c # into leftgoing and rightgoing parts respectively. c # With the Roe solver we have c # amdq = A^- \Delta q and apdq = A^+ \Delta q c # where A is the Roe matrix. An entropy fix can also be incorporated c # into the flux differences. c c # Note that the i'th Riemann problem has left state qr(i-1,:) c # and right state ql(i,:) c # From the basic clawpack routines, this routine is called with ql = qr c c # Copyright (C) 2002 Ralf Deiterding c # Brandenburgische Universitaet Cottbus c implicit double precision(a-h,o-z) c dimension wave(1-mbc:maxm+mbc, meqn, mwaves) dimension s(1-mbc:maxm+mbc, mwaves) dimension ql(1-mbc:maxm+mbc, meqn) dimension qr(1-mbc:maxm+mbc, meqn) dimension amdq(1-mbc:maxm+mbc, meqn) dimension apdq(1-mbc:maxm+mbc, meqn) dimension auxl(1-mbc:maxm+mbc, maux, 3) dimension auxr(1-mbc:maxm+mbc, maux, 3) c c local arrays -- common block comroe is passed to rpt3eum c c ------------ parameter (maxmrp = 1005) !# assumes atmost max(mx,my,mz) = 1000 with mbc=5 parameter (minmrp = -4) !# assumes at most mbc=5 dimension delta(7) logical efix common /comroe/ u2v2w2(minmrp:maxmrp), & u(minmrp:maxmrp),v(minmrp:maxmrp),w(minmrp:maxmrp), & enth(minmrp:maxmrp),a(minmrp:maxmrp),g1a2(minmrp:maxmrp), & euv(minmrp:maxmrp),p(minmrp:maxmrp) c data efix /.true./ !# use entropy fix for transonic rarefactions c if (minmrp.gt.1-mbc .or. maxmrp .lt. maxm+mbc) then write(6,*) 'need to increase maxmrp in rpA' stop endif c c # set mu to point to the component of the system that corresponds c # to momentum in the direction of this slice, mv and mw to the c # orthogonal momentums: c if(ixyz .eq. 1)then mu = 2 mv = 3 mw = 4 else if(ixyz .eq. 2)then mu = 3 mv = 4 mw = 2 else mu = 4 mv = 2 mw = 3 endif c c c # note that notation for u,v, and w reflects assumption that the c # Riemann problems are in the x-direction with u in the normal c # direction and v and w in the orthogonal directions, but with the c # above definitions of mu, mv, and mw the routine also works with c # ixyz=2 and ixyz = 3 c # and returns, for example, f0 as the Godunov flux g0 for the c # Riemann problems u_t + g(u)_y = 0 in the y-direction. c c c # Compute the Roe-averaged variables needed in the Roe solver. c # These are stored in the common block comroe since they are c # later used in routine rpt3eu to do the transverse wave c # splitting. c do 10 i = 2-mbc, mx+mbc rhsqrtl = dsqrt(qr(i-1,1)) rhsqrtr = dsqrt(ql(i,1)) pl = (qr(i-1,5) - 0.5d0*(qr(i-1,mu)**2 + qr(i-1,mv)**2 + & qr(i-1,mw)**2)/qr(i-1,1) - qr(i-1,7) ) / qr(i-1,6) pr = (ql(i,5) - 0.5d0*(ql(i,mu)**2 + ql(i,mv)**2 + & ql(i,mw)**2)/ql(i,1) - ql(i,7) ) / ql(i,6) rhsq2 = rhsqrtl + rhsqrtr gamma1 = rhsq2 / ( qr(i-1,6)*rhsqrtl + ql(i,6)*rhsqrtr ) xjota = ( pl*qr(i-1,6)*rhsqrtl + pr*ql(i,6)*rhsqrtr ) / rhsq2 p(i) = xjota*gamma1 u(i) = (qr(i-1,mu)/rhsqrtl + ql(i,mu)/rhsqrtr) / rhsq2 v(i) = (qr(i-1,mv)/rhsqrtl + ql(i,mv)/rhsqrtr) / rhsq2 w(i) = (qr(i-1,mw)/rhsqrtl + ql(i,mw)/rhsqrtr) / rhsq2 enth(i) = (((qr(i-1,5)+pl)/rhsqrtl & + (ql(i,5)+pr)/rhsqrtr)) / rhsq2 u2v2w2(i) = u(i)**2 + v(i)**2 + w(i)**2 a2 = gamma1*(enth(i) - .5d0*u2v2w2(i)) a(i) = dsqrt(a2) g1a2(i) = gamma1 / a2 euv(i) = enth(i) - u2v2w2(i) 10 continue c c c # now split the jump in q1d at each interface into waves c c # find a1 thru a5, the coefficients of the 5 eigenvectors: do 20 i = 2-mbc, mx+mbc delta(1) = ql(i,1) - qr(i-1,1) delta(2) = ql(i,mu) - qr(i-1,mu) delta(3) = ql(i,mv) - qr(i-1,mv) delta(4) = ql(i,mw) - qr(i-1,mw) delta(5) = ql(i,5) - qr(i-1,5) delta(6) = ql(i,6) - qr(i-1,6) delta(7) = ql(i,7) - qr(i-1,7) a4 = g1a2(i) * (euv(i)*delta(1) & + u(i)*delta(2) + v(i)*delta(3) + w(i)*delta(4) & - delta(5) + p(i)*delta(6) + delta(7)) a2 = delta(3) - v(i)*delta(1) a3 = delta(4) - w(i)*delta(1) a5 = (delta(2) + (a(i)-u(i))*delta(1) - a(i)*a4) / (2.d0*a(i)) a1 = delta(1) - a4 - a5 a6 = delta(6) a7 = delta(7) c c # Compute the waves. c # Note that the 2,3,6,7-wave travel at the same speed c # and are lumped together in wave(.,.,2). The 5-wave is then stored c # in wave(.,.,3). c wave(i,1,1) = a1 wave(i,mu,1) = a1*(u(i)-a(i)) wave(i,mv,1) = a1*v(i) wave(i,mw,1) = a1*w(i) wave(i,5,1) = a1*(enth(i) - u(i)*a(i)) wave(i,6,1) = 0.d0 wave(i,7,1) = 0.d0 s(i,1) = u(i)-a(i) c wave(i,1,2) = a4 wave(i,mu,2) = a4*u(i) wave(i,mv,2) = a4*v(i) + a2 wave(i,mw,2) = a4*w(i) + a3 wave(i,5,2) = a4*0.5d0*u2v2w2(i)+a2*v(i)+a3*w(i)+a6*p(i)+a7 wave(i,6,2) = a6 wave(i,7,2) = a7 s(i,2) = u(i) c wave(i,1,3) = a5 wave(i,mu,3) = a5*(u(i)+a(i)) wave(i,mv,3) = a5*v(i) wave(i,mw,3) = a5*w(i) wave(i,5,3) = a5*(enth(i)+u(i)*a(i)) wave(i,6,3) = 0.d0 wave(i,7,3) = 0.d0 s(i,3) = u(i)+a(i) 20 continue c c c # compute flux differences amdq and apdq. c --------------------------------------- c if (efix) go to 110 c c # no entropy fix c ---------------- c c # amdq = SUM s*wave over left-going waves c # apdq = SUM s*wave over right-going waves c do 100 m=1,meqn do 100 i=2-mbc, mx+mbc amdq(i,m) = 0.d0 apdq(i,m) = 0.d0 do 90 mws=1,mwaves if (s(i,mws) .lt. 0.d0) then amdq(i,m) = amdq(i,m) + s(i,mws)*wave(i,m,mws) else apdq(i,m) = apdq(i,m) + s(i,mws)*wave(i,m,mws) endif 90 continue 100 continue go to 900 c c----------------------------------------------------- c 110 continue c c # With entropy fix c ------------------ c c # compute flux differences amdq and apdq. c # First compute amdq as sum of s*wave for left going waves. c # Incorporate entropy fix by adding a modified fraction of wave c # if s should change sign. c do 200 i = 2-mbc, mx+mbc c c # check 1-wave: c --------------- c rhoim1 = qr(i-1,1) pim1 = (qr(i-1,5) - 0.5d0*(qr(i-1,mu)**2 + qr(i-1,mv)**2 + & qr(i-1,mw)**2)/qr(i-1,1) - qr(i-1,7) ) / qr(i-1,6) gamma1 = 1.d0/qr(i-1,6) gamma = gamma1 + 1.d0 pinf = qr(i-1,7)*gamma1/gamma cim1 = dsqrt(gamma*(pim1+pinf)/rhoim1) s0 = qr(i-1,mu)/rhoim1 - cim1 !# u-c in left state (cell i-1) c c # check for fully supersonic case: if (s0.ge.0.d0 .and. s(i,1).gt.0.d0)then c # everything is right-going do 60 m=1,meqn amdq(i,m) = 0.d0 60 continue go to 200 endif c rho1 = qr(i-1,1) + wave(i,1,1) rhou1 = qr(i-1,mu) + wave(i,mu,1) rhov1 = qr(i-1,mv) + wave(i,mv,1) rhow1 = qr(i-1,mw) + wave(i,mw,1) en1 = qr(i-1,5) + wave(i,5,1) p1 = (en1 - 0.5d0*(rhou1**2 + rhov1**2 + rhow1**2)/rho1 & - qr(i-1,7) ) / qr(i-1,6) c1 = dsqrt(gamma*(p1+pinf)/rho1) s1 = rhou1/rho1 - c1 !# u-c to right of 1-wave if (s0.lt.0.d0 .and. s1.gt.0.d0) then c # transonic rarefaction in the 1-wave sfract = s0 * (s1-s(i,1)) / (s1-s0) else if (s(i,1) .lt. 0.d0) then c # 1-wave is leftgoing sfract = s(i,1) else c # 1-wave is rightgoing sfract = 0.d0 !# this shouldn't happen since s0 < 0 endif do 120 m=1,meqn amdq(i,m) = sfract*wave(i,m,1) 120 continue c c # check 2-wave: c --------------- c if (s(i,2) .ge. 0.d0) go to 200 !# 2-,3- and 4- waves are rightgoing do 140 m=1,meqn amdq(i,m) = amdq(i,m) + s(i,2)*wave(i,m,2) 140 continue c c # check 3-wave: c --------------- c rhoi = ql(i,1) pi = (ql(i,5) - 0.5d0*(ql(i,mu)**2 + ql(i,mv)**2 + & ql(i,mw)**2)/ql(i,1) - ql(i,7) ) / ql(i,6) gamma1 = 1.d0/ql(i,6) gamma = gamma1 + 1.d0 pinf = ql(i,7)*gamma1/gamma ci = dsqrt(gamma*(pi+pinf)/rhoi) s3 = ql(i,mu)/rhoi + ci !# u+c in right state (cell i) c rho2 = ql(i,1) - wave(i,1,3) rhou2 = ql(i,mu) - wave(i,mu,3) rhov2 = ql(i,mv) - wave(i,mv,3) rhow2 = ql(i,mw) - wave(i,mw,3) en2 = ql(i,5) - wave(i,5,3) p2 = (en2 - 0.5d0*(rhou2**2+rhov2**2+rhow2**2)/rho2 & - ql(i,7)) / ql(i,6) c2 = dsqrt(gamma*(p2+pinf)/rho2) s2 = rhou2/rho2 + c2 !# u+c to left of 3-wave if (s2 .lt. 0.d0 .and. s3.gt.0.d0 ) then c # transonic rarefaction in the 3-wave sfract = s2 * (s3-s(i,3)) / (s3-s2) else if (s(i,3) .lt. 0.d0) then c # 3-wave is leftgoing sfract = s(i,3) else c # 3-wave is rightgoing go to 200 endif c do 160 m=1,5 amdq(i,m) = amdq(i,m) + sfract*wave(i,m,3) 160 continue 200 continue c c # compute the rightgoing flux differences: c # df = SUM s*wave is the total flux difference and apdq = df - amdq c do 220 m=1,meqn do 220 i = 2-mbc, mx+mbc df = 0.d0 do 210 mws=1,mwaves df = df + s(i,mws)*wave(i,m,mws) 210 continue apdq(i,m) = df - amdq(i,m) 220 continue c 900 continue return end