• VTF
  • FSI
  • AMROC
  • SFC
  • Motion
  • STLIB
  • Main Page
  • src/2d/equations/euler/rp/rpn2euswg.f

    c
    c
    c     =====================================================
          subroutine rpn2eu(ixy,maxm,meqn,mwaves,mbc,mx,ql,qr,maux,
         &     auxl,auxr,wave,s,fl,fr)
    c     =====================================================
    c
    c     # solve Riemann problems for the 2D Euler equations using 
    c     # Steger & Warming - Flux Vector Splitting 
    c
    c     # On input, ql contains the state vector at the left edge of each cell
    c     #           qr contains the state vector at the right edge of each cell
    c
    c     # This data is along a slice in the x-direction if ixy=1 
    c     #                            or the y-direction if ixy=2.
    c     # On output, wave contains the waves, s the speeds, 
    c     # fl and fr the positive and negative flux.
    c
    c     # Note that the i'th Riemann problem has left state qr(i-1,:)
    c     #                                    and right state ql(i,:)
    c     # From the basic routines, this routine is called with ql = qr
    c
    c     # Copyright (C) 2002 Ralf Deiterding
    c     # Brandenburgische Universitaet Cottbus
    c
          implicit double precision (a-h,o-z)
          dimension wave(1-mbc:maxm+mbc, meqn, mwaves)
          dimension    s(1-mbc:maxm+mbc, mwaves)
          dimension   ql(1-mbc:maxm+mbc, meqn)
          dimension   qr(1-mbc:maxm+mbc, meqn)
          dimension   fl(1-mbc:maxm+mbc, meqn)
          dimension   fr(1-mbc:maxm+mbc, meqn)
          double precision el(3), er(3)
          common /param/  gamma,gamma1
    c
    c     # Method returns fluxes
    c     ------------
          common /rpnflx/ mrpnflx
          mrpnflx = 1
    c
    c     # set mu to point to  the component of the system that corresponds
    c     # to momentum in the direction of this slice, mv to the orthogonal
    c     # momentum:
    c
          if (ixy.eq.1) then
             mu = 2
             mv = 3
          else
             mu = 3
             mv = 2
          endif
    c
    c     #  Steger & Warming - Flux Vector Splitting 
    c
          do 10 i=2-mbc,mx+mbc
             rhol = qr(i-1,1)
             rhor = ql(i  ,1)
             ul = qr(i-1,mu)/rhol
             ur = ql(i  ,mu)/rhor
             vl = qr(i-1,mv)/rhol
             vr = ql(i  ,mv)/rhor
    	 pl = gamma1*(qr(i-1,4) - 0.5d0*(ul**2+vl**2)*rhol)
    	 pr = gamma1*(ql(i  ,4) - 0.5d0*(ur**2+vr**2)*rhor)
             Hl = (qr(i-1,4)+pl)/rhol
             Hr = (ql(i  ,4)+pr)/rhor
    c
             al2 = gamma*pl/rhol
             al  = dsqrt(al2)
             ar2 = gamma*pr/rhor
             ar  = dsqrt(ar2)
    c
             el(1) = 0.5d0*(ul-al + dabs(ul-al))
             el(2) = 0.5d0*(ul    + dabs(ul)   )
             el(3) = 0.5d0*(ul+al + dabs(ul+al))
             er(1) = 0.5d0*(ur-ar - dabs(ur-ar))
             er(2) = 0.5d0*(ur    - dabs(ur)   )
             er(3) = 0.5d0*(ur+ar - dabs(ur+ar))
    c
             facl = 0.5d0*qr(i-1,1)/gamma
             facr = 0.5d0*ql(i  ,1)/gamma
    c
             taul  = facl*(el(1) + 2.d0*gamma1*el(2) + el(3))
             taur  = facr*(er(1) + 2.d0*gamma1*er(2) + er(3))
             zetal = al*facl*(el(1)-el(3)) 
             zetar = ar*facr*(er(1)-er(3)) 
    c
             fl(i,1)  = taul + taur
             fl(i,mu) = ul*taul - zetal + ur*taur - zetar
             fl(i,mv) = vl*taul + vr*taur
             fl(i,4)  = Hl*taul - ul*zetal - 2.d0*el(2)*facl*al2 + 
         &              Hr*taur - ur*zetar - 2.d0*er(2)*facr*ar2
    c
             do 20 m = 1, meqn
                fr(i,m) = -fl(i,m)
     20      continue
    c
             do 10 mw=1,mwaves
                s(i,mw) = dmax1(dabs(el(mw)),dabs(er(mw)))
                do 10 m=1,meqn
                   wave(i,m,mw) = 0.d0
     10   continue
    c
          return
          end
    

<