c c ========================================================= subroutine rpn2eurhok(ixy,maxm,meqn,mwaves,mbc,mx,ql,qr,maux, & auxl,auxr,wave,s,amdq,apdq) c ========================================================= c c # solve Riemann problems for the 2D Euler equations of multiple c # thermally perfect gases using the Flux-Vector-Splitting c # of Steger & Warming c c # On input, ql contains the state vector at the left edge of each cell c # qr contains the state vector at the right edge of each cell c # On output, wave contains the waves, c # s the speeds, c # amdq the positive flux c # apdq the negative flux c # (the fluxes are stored twice to be consistent with the c # flux-difference splitting formulation) c c # Note that the i'th Riemann problem has left state qr(i-1,:) c # and right state ql(i,:) c # From the basic clawpack routine step1, rp is called with ql = qr = q. c c # Copyright (C) 2002 Ralf Deiterding c # Brandenburgische Universitaet Cottbus c implicit double precision (a-h,o-z) dimension ql(1-mbc:maxm+mbc, meqn) dimension qr(1-mbc:maxm+mbc, meqn) dimension s(1-mbc:maxm+mbc, mwaves) dimension wave(1-mbc:maxm+mbc, meqn, mwaves) dimension amdq(1-mbc:maxm+mbc, meqn) dimension apdq(1-mbc:maxm+mbc, meqn) c c define local arrays c include "ck.i" dimension Yl(LeNsp), Yr(LeNsp), el(3), er(3) c c # Riemann solver returns fluxes c ------------ common /rpnflx/ mrpnflx mrpnflx = 1 c c # set mu to point to the component of the system that corresponds c # to momentum in the direction of this slice, mv to the orthogonal c # momentum: c if (ixy.eq.1) then mu = Nsp+1 mv = Nsp+2 else mu = Nsp+2 mv = Nsp+1 endif mE = Nsp+3 mT = Nsp+4 c do 10 i=2-mbc,mx+mbc rhol = 0.d0 rhor = 0.d0 rhoWl = 0.d0 rhoWr = 0.d0 do k = 1, Nsp rhol = rhol + qr(i-1,k) rhor = rhor + ql(i ,k) rhoWl = rhoWl + qr(i-1,k)/Wk(k) rhoWr = rhoWr + ql(i ,k)/Wk(k) enddo do k = 1, Nsp Yl(k) = qr(i-1,k)/rhol Yr(k) = ql(i ,k)/rhor enddo ul = qr(i-1,mu)/rhol ur = ql(i ,mu)/rhor vl = qr(i-1,mv)/rhol vr = ql(i ,mv)/rhor c c # left/right Temperatures already calculated c Tl = qr(i-1,mT) Tr = ql(i ,mT) c pl = rhoWl*RU*Tl pr = rhoWr*RU*Tr Hl = (qr(i-1,mE)+pl)/rhol Hr = (ql(i ,mE)+pr)/rhor c c # Evaluate temperature depended gamma for left/right mixture c Cpl = avgtabip(Tl,Yl,cpk,Nsp) gamma1l = RU / ( rhol/rhoWl*Cpl - RU ) gammal = gamma1l + 1.d0 Cpr = avgtabip(Tr,Yr,cpk,Nsp) gamma1r = RU / ( rhor/rhoWr*Cpr - RU ) gammar = gamma1r + 1.d0 c al2 = gammal*pl/rhol al = dsqrt(al2) ar2 = gammar*pr/rhor ar = dsqrt(ar2) c el(1) = 0.5d0*(ul-al + dabs(ul-al)) el(2) = 0.5d0*(ul + dabs(ul) ) el(3) = 0.5d0*(ul+al + dabs(ul+al)) er(1) = 0.5d0*(ur-ar - dabs(ur-ar)) er(2) = 0.5d0*(ur - dabs(ur) ) er(3) = 0.5d0*(ur+ar - dabs(ur+ar)) c fl = 0.5d0*rhol/gammal fr = 0.5d0*rhor/gammar c taul = fl*(el(1) + 2.d0*gamma1l*el(2) + el(3)) taur = fr*(er(1) + 2.d0*gamma1r*er(2) + er(3)) zetal = al*fl*(el(1)-el(3)) zetar = ar*fr*(er(1)-er(3)) c do k = 1, Nsp amdq(i,k) = Yl(k)*taul + Yr(k)*taur enddo amdq(i,mu) = ul*taul - zetal + ur*taur - zetar amdq(i,mv) = vl*taul + vr*taur amdq(i,mE) = Hl*taul - ul*zetal - 2.d0*el(2)*fl*al2 + & Hr*taur - ur*zetar - 2.d0*er(2)*fr*ar2 amdq(i,mT) = 0.d0 c do 20 m = 1, meqn apdq(i,m) = -amdq(i,m) 20 continue c do 10 mw=1,mwaves s(i,mw) = dmax1(dabs(el(mw)),dabs(er(mw))) do 10 m=1,meqn wave(i,m,mw) = 0.d0 10 continue c return end