• VTF
  • FSI
  • AMROC
  • SFC
  • Motion
  • STLIB
  • Main Page
  • src/1d/equations/euler/rpm/rp1eumhllc.f

    c
    c =========================================================
          subroutine rp1eum(maxmx,meqn,mwaves,mbc,mx,ql,qr,maux,
         &     auxl,auxr,wave,s,amdq,apdq)
    c =========================================================
    c
    c     # solve Riemann problems for the 1D two-component Euler equations 
    c     # using HLLC
    c
    c     # On input, ql contains the state vector at the left edge of each cell
    c     #           qr contains the state vector at the right edge of each cell
    c     # On output, wave contains the waves, 
    c     #            s the speeds, 
    c     #            amdq the  left-going flux difference  A^- \Delta q
    c     #            apdq the right-going flux difference  A^+ \Delta q
    c
    c     # Note that the i'th Riemann problem has left state qr(i-1,:)
    c     #                                    and right state ql(i,:)
    c     # From the basic routine step1, rp is called with ql = qr = q.
    c
    c     # Copyright (C) 2003-2007 California Institute of Technology
    c     # Ralf Deiterding, ralf@cacr.caltech.edu
    c
          implicit double precision (a-h,o-z)
          dimension   ql(1-mbc:maxmx+mbc, meqn)
          dimension   qr(1-mbc:maxmx+mbc, meqn)
          dimension    s(1-mbc:maxmx+mbc, mwaves)
          dimension wave(1-mbc:maxmx+mbc, meqn, mwaves)
          dimension amdq(1-mbc:maxmx+mbc, meqn)
          dimension apdq(1-mbc:maxmx+mbc, meqn)
    c 
    c     # local storage
    c     ---------------
          parameter (max2 = 100002)  !# assumes at most 100000 grid points with mbc=2
          dimension qls(3), qrs(3)
          logical roespeed
          data roespeed /.false./    !# use Roe average for wave speed estimation 
    c
    c     # Riemann solver returns flux differences
    c     ------------
          common /rpnflx/ mrpnflx
          mrpnflx = 0
    c
          do 10 i = 2-mbc, mx+mbc
             if (qr(i-1,1).le.0.d0.or.ql(i,1).le.0.d0) then 
                write (6,*) 'Unrecoverable error in density',i
                write (6,*) qr(i-1,1),ql(i,1)
                stop
             endif
    c     
             rl = qr(i-1,1)
             ul = qr(i-1,2)/rl
             gammal1 = 1.d0/qr(i-1,4)
             gammal = gammal1 + 1.d0
             pinfl = qr(i-1,5)*gammal1/gammal
             pl = (qr(i-1,3) - 0.5d0*qr(i-1,2)**2/rl 
         &        - qr(i-1,5) ) / qr(i-1,4)
             if (pl+pinfl.le.0.d0.or.gammal.le.0.d0) then 
                write (6,*) 'Unrecoverable error in speed of sound l',i
                write (6,*) pl,pinfl,pl+pinfl,gammal
                stop
             endif
             al = dsqrt(gammal*(pl+pinfl)/rl)
    c     
             rr = ql(i  ,1)
             ur = ql(i  ,2)/rr
             gammar1 = 1.d0/ql(i  ,4)
             gammar = gammar1 + 1.d0
             pinfr = ql(i  ,5)*gammar1/gammar
             pr = (ql(i  ,3) - 0.5d0*ql(i  ,2)**2/rr
         &        - ql(i  ,5) ) / ql(i  ,4)
             if (pr+pinfr.le.0.d0.or.gammar.le.0.d0) then 
                write (6,*) 'Unrecoverable error in speed of sound r',i
                write (6,*) pr,pinfr,pr+pinfr,gammar
                stop
             endif
             ar = dsqrt(gammar*(pr+pinfr)/rr)
    c     
             rhsqrtl = dsqrt(qr(i-1,1))
             rhsqrtr = dsqrt(ql(i,1))
             rhsq2 = rhsqrtl + rhsqrtr
             gamma1 = rhsq2 / ( qr(i-1,4)*rhsqrtl + ql(i,4)*rhsqrtr ) 
             ui = (qr(i-1,2)/rhsqrtl + ql(i,2)/rhsqrtr) / rhsq2
             enthi = (((qr(i-1,3)+pl)/rhsqrtl
         &           + (ql(i  ,3)+pr)/rhsqrtr)) / rhsq2                      
             a2 = gamma1*(enthi - .5d0*ui**2)
             ai = dsqrt(a2)
             if (a2.le.0.d0) ai = dmax1(al,ar)
    c
             if (roespeed) then
                sl = ui-ai
                sr = ui+ai
             else
                sl = dmin1(ul-al,ur-ar)
                sr = dmax1(ul+al,ur+ar)
             endif
             ss = (pr-pl+rl*ul*(sl-ul)-rr*ur*(sr-ur))/
         &        (rl*(sl-ul)-rr*(sr-ur))
    c
             qrs(1) = rr*(sr-ur)/(sr-ss)
             qrs(2) = qrs(1)*ss
             qrs(3) = qrs(1)*(ql(i  ,3)/rr+
         &        (ss-ur)*(ss+pr/(rr*(sr-ur))))
    c     
             qls(1) = rl*(sl-ul)/(sl-ss)
             qls(2) = qls(1)*ss
             qls(3) = qls(1)*(qr(i-1,3)/rl+
         &        (ss-ul)*(ss+pl/(rl*(sl-ul))))
    c
             do m=1,3
                wave(i,m,1) = qls(m) - qr(i-1,m)
                wave(i,m,2) = qrs(m) - qls(m)
                wave(i,m,3) = ql(i,m) - qrs(m) 
             enddo
             do m=4,5
                wave(i,m,1) = 0.d0
                wave(i,m,2) = ql(i,m) - qr(i-1,m)
                wave(i,m,3) = 0.d0
             enddo
    c
             s(i,1) = sl
             s(i,2) = ss
             s(i,3) = sr
    c  
             do m=1,meqn
                amdq(i,m) = 0.d0
                apdq(i,m) = 0.d0
                do mw=1,mwaves
                   if (s(i,mw) .lt. 0.d0) then
                      amdq(i,m) = amdq(i,m) + s(i,mw)*wave(i,m,mw)
                   else
                      apdq(i,m) = apdq(i,m) + s(i,mw)*wave(i,m,mw)
                   endif
                enddo
             enddo
     10   continue
          return
          end
    c
    

<