c c c ========================================================= subroutine rp1eum(maxmx,meqn,mwaves,mbc,mx,ql,qr,maux, & auxl,auxr,wave,s,amdq,apdq) c ========================================================= c c # solve Riemann problems for the 1D two-component c # Euler equations using Roe's approximate Riemann solver. c c # Keh-Ming Shyue "An efficient shock-capturing algorithm for c # compressible multicomponent problems", J. Comput. Phys., Vol. 142, c # pp 208-242, 1998 c c # On input, ql contains the state vector at the left edge of each cell c # qr contains the state vector at the right edge of each cell c # On output, wave contains the waves, c # s the speeds, c # amdq the left-going flux difference A^- \Delta q c # apdq the right-going flux difference A^+ \Delta q c c # Note that the i'th Riemann problem has left state qr(i-1,:) c # and right state ql(i,:) c # From the basic routine step1, rp is called with ql = qr = q. c c # Copyright (C) 2002 Ralf Deiterding c # Brandenburgische Universitaet Cottbus c c # Copyright (C) 2003-2007 California Institute of Technology c # Ralf Deiterding, ralf@cacr.caltech.edu c implicit double precision (a-h,o-z) dimension ql(1-mbc:maxmx+mbc, meqn) dimension qr(1-mbc:maxmx+mbc, meqn) dimension s(1-mbc:maxmx+mbc, mwaves) dimension wave(1-mbc:maxmx+mbc, meqn, mwaves) dimension amdq(1-mbc:maxmx+mbc, meqn) dimension apdq(1-mbc:maxmx+mbc, meqn) c c # local storage c --------------- parameter (max2 = 100002) !# assumes at most 100000 grid points with mbc=2 dimension delta(5) dimension u(-1:max2),enth(-1:max2),a(-1:max2), & g1a2(-1:max2),euv(-1:max2),p(-1:max2) logical efix c data efix /.true./ !# use entropy fix for transonic rarefactions c c # Riemann solver returns flux differences c ------------ common /rpnflx/ mrpnflx mrpnflx = 0 c c # Compute Roe-averaged quantities: c do 10 i = 2-mbc, mx+mbc rhsqrtl = dsqrt(qr(i-1,1)) rhsqrtr = dsqrt(ql(i,1)) pl = (qr(i-1,3) - 0.5d0*(qr(i-1,2)**2)/qr(i-1,1) & - qr(i-1,5) ) / qr(i-1,4) pr = (ql(i,3) - 0.5d0*(ql(i,2)**2)/ql(i,1) & - ql(i,5) ) / ql(i,4) rhsq2 = rhsqrtl + rhsqrtr gamma1 = rhsq2 / ( qr(i-1,4)*rhsqrtl + ql(i,4)*rhsqrtr ) xjota = ( pl*qr(i-1,4)*rhsqrtl + pr*ql(i,4)*rhsqrtr ) / rhsq2 p(i) = xjota*gamma1 u(i) = (qr(i-1,2)/rhsqrtl + ql(i,2)/rhsqrtr) / rhsq2 enth(i) = (((qr(i-1,3)+pl)/rhsqrtl & + (ql(i,3)+pr)/rhsqrtr)) / rhsq2 a2 = gamma1*(enth(i) - .5d0*u(i)**2) a(i) = dsqrt(a2) g1a2(i) = gamma1 / a2 euv(i) = enth(i) - u(i)**2 10 continue c c c # now split the jump in q at each interface into waves c c # find a1 thru a5, the coefficients of the 5 eigenvectors: do 20 i = 2-mbc, mx+mbc do n = 1, 5 delta(n) = ql(i,n) - qr(i-1,n) enddo a2 = g1a2(i) * (euv(i)*delta(1) + u(i)*delta(2) - delta(3) & + p(i)*delta(4) + delta(5)) a3 = (delta(2) + (a(i)-u(i))*delta(1) - a(i)*a2) / (2.d0*a(i)) a1 = delta(1) - a2 - a3 a4 = delta(4) a5 = delta(5) c c # Compute the waves. c # Note that the 2-wave as well as the 4-wave and 5-wave c # travel at the same speed and are lumped together in wave(.,.,2). c # The 3-wave is then stored in wave(.,.,3). c wave(i,1,1) = a1 wave(i,2,1) = a1*(u(i)-a(i)) wave(i,3,1) = a1*(enth(i) - u(i)*a(i)) wave(i,4,1) = 0.d0 wave(i,5,1) = 0.d0 s(i,1) = u(i)-a(i) c wave(i,1,2) = a2 wave(i,2,2) = a2*u(i) wave(i,3,2) = a2*0.5d0*u(i)**2 + a4*p(i) + a5 wave(i,4,2) = a4 wave(i,5,2) = a5 s(i,2) = u(i) c wave(i,1,3) = a3 wave(i,2,3) = a3*(u(i)+a(i)) wave(i,3,3) = a3*(enth(i)+u(i)*a(i)) wave(i,4,3) = 0.d0 wave(i,5,3) = 0.d0 s(i,3) = u(i)+a(i) 20 continue c c c # compute flux differences amdq and apdq. c --------------------------------------- c if (efix) go to 110 c c # no entropy fix c ---------------- c c # amdq = SUM s*wave over left-going waves c # apdq = SUM s*wave over right-going waves c do 100 m=1,5 do 100 i=2-mbc, mx+mbc amdq(i,m) = 0.d0 apdq(i,m) = 0.d0 do 90 mw=1,mwaves if (s(i,mw) .lt. 0.d0) then amdq(i,m) = amdq(i,m) + s(i,mw)*wave(i,m,mw) else apdq(i,m) = apdq(i,m) + s(i,mw)*wave(i,m,mw) endif 90 continue 100 continue go to 900 c c----------------------------------------------------- c 110 continue c c # With entropy fix c ------------------ c c # compute flux differences amdq and apdq. c # First compute amdq as sum of s*wave for left going waves. c # Incorporate entropy fix by adding a modified fraction of wave c # if s should change sign. c do 200 i = 2-mbc, mx+mbc c c # check 1-wave: c --------------- c rhoim1 = qr(i-1,1) pim1 = (qr(i-1,3) - 0.5d0*(qr(i-1,2)**2)/qr(i-1,1) & - qr(i-1,5) ) / qr(i-1,4) gamma1 = 1.d0/qr(i-1,4) gamma = gamma1 + 1.d0 pinf = qr(i-1,5)*gamma1/gamma cim1 = dsqrt(gamma*(pim1+pinf)/rhoim1) s0 = qr(i-1,2)/rhoim1 - cim1 !# u-c in left state (cell i-1) c # check for fully supersonic case: if (s0.ge.0.d0 .and. s(i,1).gt.0.d0) then c # everything is right-going do 60 m=1,5 amdq(i,m) = 0.d0 60 continue go to 200 endif c rho1 = qr(i-1,1) + wave(i,1,1) rhou1 = qr(i-1,2) + wave(i,2,1) en1 = qr(i-1,3) + wave(i,3,1) p1 = (en1-0.5d0*(rhou1**2)/rho1-qr(i-1,5))/qr(i-1,4) c1 = dsqrt(gamma*(p1+pinf)/rho1) s1 = rhou1/rho1 - c1 !# u-c to right of 1-wave if (s0.lt.0.d0 .and. s1.gt.0.d0) then c # transonic rarefaction in the 1-wave sfract = s0 * (s1-s(i,1)) / (s1-s0) else if (s(i,1) .lt. 0.d0) then c # 1-wave is leftgoing sfract = s(i,1) else c # 1-wave is rightgoing sfract = 0.d0 !# this shouldn't happen since s0 < 0 endif do 120 m=1,5 amdq(i,m) = sfract*wave(i,m,1) 120 continue c c # check 2-wave: c --------------- c if (s(i,2) .ge. 0.d0) go to 200 !# 2- and 3- waves are rightgoing do 140 m=1,5 amdq(i,m) = amdq(i,m) + s(i,2)*wave(i,m,2) 140 continue c c # check 3-wave: c --------------- c rhoi = ql(i,1) pi = (ql(i,3) - 0.5d0*(ql(i,2)**2)/ql(i,1) & - ql(i,5) ) / ql(i,4) gamma1 = 1.d0/ql(i,4) gamma = gamma1 + 1.d0 pinf = ql(i,5)*gamma1/gamma ci = dsqrt(gamma*(pi+pinf)/rhoi) s3 = ql(i,2)/rhoi + ci !# u+c in right state (cell i) c rho2 = ql(i,1) - wave(i,1,3) rhou2 = ql(i,2) - wave(i,2,3) en2 = ql(i,3) - wave(i,3,3) p2 = (en2-0.5d0*(rhou2**2)/rho2-ql(i,5))/ql(i,4) c2 = dsqrt(gamma*(p2+pinf)/rho2) s2 = rhou2/rho2 + c2 !# u+c to left of 3-wave if (s2 .lt. 0.d0 .and. s3.gt.0.d0) then c # transonic rarefaction in the 3-wave sfract = s2 * (s3-s(i,3)) / (s3-s2) else if (s(i,3) .lt. 0.d0) then c # 3-wave is leftgoing sfract = s(i,3) else c # 3-wave is rightgoing go to 200 endif c do 160 m=1,5 amdq(i,m) = amdq(i,m) + sfract*wave(i,m,3) 160 continue 200 continue c c # compute the rightgoing flux differences: c # df = SUM s*wave is the total flux difference and apdq = df - amdq c do 220 m=1,5 do 220 i = 2-mbc, mx+mbc df = 0.d0 do 210 mw=1,mwaves df = df + s(i,mw)*wave(i,m,mw) 210 continue apdq(i,m) = df - amdq(i,m) 220 continue c 900 continue return end