c c ========================================================= subroutine rp1eu(maxmx,meqn,mwaves,mbc,mx,ql,qr,maux, & auxl,auxr,wave,s,amdq,apdq) c ========================================================= c c # solve Riemann problems for the 1D Euler equations using Roe's c # approximate Riemann solver. c c # On input, ql contains the state vector at the left edge of each cell c # qr contains the state vector at the right edge of each cell c # On output, wave contains the waves, s the speeds, c # amdq and apdq the positive and negative flux. c c # Note that the i'th Riemann problem has left state qr(i-1,:) c # and right state ql(i,:) c # From the basic routine step1, rp is called with ql = qr = q. c c Author: Randall J. LeVeque c implicit double precision (a-h,o-z) dimension ql(1-mbc:maxmx+mbc, meqn) dimension qr(1-mbc:maxmx+mbc, meqn) dimension s(1-mbc:maxmx+mbc, mwaves) dimension wave(1-mbc:maxmx+mbc, meqn, mwaves) dimension amdq(1-mbc:maxmx+mbc, meqn) dimension apdq(1-mbc:maxmx+mbc, meqn) c c # local storage c --------------- parameter (max2 = 100002) !# assumes at most 100000 grid points with mbc=2 dimension delta(3) dimension u(-1:max2),enth(-1:max2),a(-1:max2) logical efix common /param/ gamma,gamma1 c data efix /.true./ !# use entropy fix for transonic rarefactions c c # Riemann solver returns fluxes c ------------ common /rpnflx/ mrpnflx mrpnflx = 1 c c # Compute Roe-averaged quantities: c do 20 i=2-mbc,mx+mbc rhsqrtl = dsqrt(qr(i-1,1)) rhsqrtr = dsqrt(ql(i,1)) pl = gamma1*(qr(i-1,3) - 0.5d0*(qr(i-1,2)**2)/qr(i-1,1)) pr = gamma1*(ql(i,3) - 0.5d0*(ql(i,2)**2)/ql(i,1)) rhsq2 = rhsqrtl + rhsqrtr u(i) = (qr(i-1,2)/rhsqrtl + ql(i,2)/rhsqrtr) / rhsq2 enth(i) = (((qr(i-1,3)+pl)/rhsqrtl & + (ql(i,3)+pr)/rhsqrtr)) / rhsq2 a2 = gamma1*(enth(i) - .5d0*u(i)**2) a(i) = dsqrt(a2) 20 continue c c do 30 i=2-mbc,mx+mbc c c # find a1 thru a3, the coefficients of the 3 eigenvectors: c delta(1) = ql(i,1) - qr(i-1,1) delta(2) = ql(i,2) - qr(i-1,2) delta(3) = ql(i,3) - qr(i-1,3) a2 = gamma1/a(i)**2 * ((enth(i)-u(i)**2)*delta(1) & + u(i)*delta(2) - delta(3)) a3 = (delta(2) + (a(i)-u(i))*delta(1) - a(i)*a2) / (2.d0*a(i)) a1 = delta(1) - a2 - a3 c c # Compute the waves. c wave(i,1,1) = a1 wave(i,2,1) = a1*(u(i)-a(i)) wave(i,3,1) = a1*(enth(i) - u(i)*a(i)) s(i,1) = u(i)-a(i) c wave(i,1,2) = a2 wave(i,2,2) = a2*u(i) wave(i,3,2) = a2*0.5d0*u(i)**2 s(i,2) = u(i) c wave(i,1,3) = a3 wave(i,2,3) = a3*(u(i)+a(i)) wave(i,3,3) = a3*(enth(i)+u(i)*a(i)) s(i,3) = u(i)+a(i) 30 continue c c # compute Godunov flux f0: c -------------------------- c c if (efix) go to 110 c c # no entropy fix c ---------------- c c # amdq = SUM s*wave over left-going waves c # apdq = SUM s*wave over right-going waves c do 100 m=1,meqn do 100 i=2-mbc, mx+mbc amdq(i,m) = 0.d0 apdq(i,m) = 0.d0 do 90 mw=1,mwaves if (s(i,mw) .lt. 0.d0) then amdq(i,m) = amdq(i,m) + s(i,mw)*wave(i,m,mw) endif 90 continue 100 continue go to 900 c c----------------------------------------------------- c 110 continue c c # With entropy fix c ------------------ c c # compute flux differences amdq and apdq. c # First compute amdq as sum of s*wave for left going waves. c # Incorporate entropy fix by adding a modified fraction of wave c # if s should change sign. c do 200 i=2-mbc,mx+mbc c c # check 1-wave: c --------------- c rhoim1 = qr(i-1,1) pim1 = gamma1*(qr(i-1,3) - 0.5d0*qr(i-1,2)**2 / rhoim1) cim1 = dsqrt(gamma*pim1/rhoim1) s0 = qr(i-1,2)/rhoim1 - cim1 !# u-c in left state (cell i-1) c # check for fully supersonic case: if (s0.ge.0.d0 .and. s(i,1).gt.0.d0) then c # everything is right-going do 60 m=1,meqn amdq(i,m) = 0.d0 60 continue go to 200 endif c rho1 = qr(i-1,1) + wave(i,1,1) rhou1 = qr(i-1,2) + wave(i,2,1) en1 = qr(i-1,3) + wave(i,3,1) p1 = gamma1*(en1 - 0.5d0*rhou1**2/rho1) c1 = dsqrt(gamma*p1/rho1) s1 = rhou1/rho1 - c1 !# u-c to right of 1-wave if (s0.lt.0.d0 .and. s1.gt.0.d0) then c # transonic rarefaction in the 1-wave sfract = s0 * (s1-s(i,1)) / (s1-s0) else if (s(i,1) .lt. 0.d0) then c # 1-wave is leftgoing sfract = s(i,1) else c # 1-wave is rightgoing sfract = 0.d0 !# this shouldn't happen since s0 < 0 endif do 120 m=1,meqn amdq(i,m) = sfract*wave(i,m,1) 120 continue c c # check 2-wave: c --------------- c if (s(i,2) .ge. 0.d0) go to 200 !# 2-wave is rightgoing do 140 m=1,meqn amdq(i,m) = amdq(i,m) + s(i,2)*wave(i,m,2) 140 continue c c # check 3-wave: c --------------- c rhoi = ql(i,1) pi = gamma1*(ql(i,3) - 0.5d0*ql(i,2)**2 / rhoi) ci = dsqrt(gamma*pi/rhoi) s3 = ql(i,2)/rhoi + ci !# u+c in right state (cell i) c rho2 = ql(i,1) - wave(i,1,3) rhou2 = ql(i,2) - wave(i,2,3) en2 = ql(i,3) - wave(i,3,3) p2 = gamma1*(en2 - 0.5d0*rhou2**2/rho2) c2 = dsqrt(gamma*p2/rho2) s2 = rhou2/rho2 + c2 !# u+c to left of 3-wave if (s2 .lt. 0.d0 .and. s3.gt.0.d0) then c # transonic rarefaction in the 3-wave sfract = s2 * (s3-s(i,3)) / (s3-s2) else if (s(i,3) .lt. 0.d0) then c # 3-wave is leftgoing sfract = s(i,3) else c # 3-wave is rightgoing go to 200 endif c do 160 m=1,meqn amdq(i,m) = amdq(i,m) + sfract*wave(i,m,3) 160 continue 200 continue c 900 continue call flx1(maxmx,meqn,mbc,mx,qr,maux,auxr,apdq) c do 300 i = 2-mbc, mx+mbc do 300 m=1,meqn amdq(i,m) = apdq(i-1,m) + amdq(i,m) 300 continue c do 310 i = 2-mbc, mx+mbc do 310 m=1,meqn apdq(i,m) = -amdq(i,m) 310 continue c return end c