c c =================================================================== subroutine rec2(ixy,maxm,meqn,mwaves,mbc,mx,q,method,mthlim,ql,qr) c =================================================================== c c # Copyright (C) 2002 Ralf Deiterding c # Brandenburgische Universitaet Cottbus c c # Copyright (C) 2003-2007 California Institute of Technology c # Ralf Deiterding, ralf@cacr.caltech.edu c implicit double precision (a-h,o-z) include "ck.i" c dimension q(1-mbc:maxm+mbc, meqn) dimension ql(1-mbc:maxm+mbc, meqn) dimension qr(1-mbc:maxm+mbc, meqn) dimension method(7),mthlim(mwaves), & Yk1(LeNsp), Yk2(LeNsp), Ykl(LeNsp), Ykr(LeNsp) c mu = Nsp+1 mv = Nsp+2 mE = Nsp+3 mT = Nsp+4 c mlim = 0 do 90 mw=1,mwaves if (mthlim(mw) .gt. 0) then mlim = mthlim(mw) goto 95 endif 90 continue 95 continue c c # Linear interpolation: om=0.d0, quadratic interpolation: om!=0.d0, c # Second order accuracte reconstruction for om=1.d0/3.d0 c om = 0.d0 do 110 i=2-mbc,mx+mbc-1 c c # Reconstruction of total density c rho = 0.d0 rho1 = 0.d0 rho2 = 0.d0 do k = 1, Nsp rho = rho + q(i ,k) rho1 = rho1 + q(i-1,k) rho2 = rho2 + q(i+1,k) enddo call reclim(rho,rho1,rho2,mlim,om,rhol,rhor) c c # Reconstruction of mass fractions - if the same limiter value c # is choosen for left and right side and for all mass fractions, c # the sum of the reconstructed mass fractions is 1. c sl = 1.d0 do k = 1, Nsp Yk1(k) = q(i ,k)/rho - q(i-1,k)/rho1 Yk2(k) = q(i+1,k)/rho2 - q(i ,k)/rho sl = dmin1(sl,slopelim(Yk1(k),Yk2(k),mlim)) sl = dmin1(sl,slopelim(Yk2(k),Yk1(k),mlim)) enddo c do k = 1, Nsp Ykl(k) = q(i,k)/rho - 0.25d0*((1.d0+om)*sl*Yk1(k) + & (1.d0-om)*sl*Yk2(k)) Ykr(k) = q(i,k)/rho + 0.25d0*((1.d0-om)*sl*Yk1(k) + & (1.d0+om)*sl*Yk2(k)) ql(i,k) = Ykl(k)*rhol qr(i,k) = Ykr(k)*rhor enddo c c # Reconstruction in conservative variables c # ---------------------------------------------------------------- if (method(2).eq.4) then do m=Nsp+1,mE call reclim(q(i,m),q(i-1,m),q(i+1,m), & mlim,om,ql(i,m),qr(i,m)) enddo c # No reconstruction for temperature - is updated in flx2eurhok ql(i,mT) = q(i,mT) qr(i,mT) = q(i,mT) c c # Reconstruction in primitive variables - not conservative c # ---------------------------------------------------------------- else rhoW = 0.d0 rhoW1 = 0.d0 rhoW2 = 0.d0 do k = 1, Nsp rhoW = rhoW + q(i ,k)/Wk(k) rhoW1 = rhoW1 + q(i-1,k)/Wk(k) rhoW2 = rhoW2 + q(i+1,k)/Wk(k) enddo c call reclim(q(i,mu)/rho,q(i-1,mu)/rho1, & q(i+1,mu)/rho2,mlim,om,ul,ur) call reclim(q(i,mv)/rho,q(i-1,mv)/rho1, & q(i+1,mv)/rho2,mlim,om,vl,vr) call reclim(rhoW*RU*q(i,mT),rhoW1*RU*q(i-1,mT), & rhoW2*RU*q(i+1,mT),mlim,om,pl,pr) ql(i,mu) = ul*rhol qr(i,mu) = ur*rhor ql(i,mv) = vl*rhol qr(i,mv) = vr*rhor c rhoWl = 0.d0 rhoWr = 0.d0 do k = 1, Nsp rhoWl = rhoWl + ql(i,k)/Wk(k) rhoWr = rhoWr + qr(i,k)/Wk(k) enddo ql(i,mT) = pl/(rhoWl*RU) qr(i,mT) = pr/(rhoWr*RU) ql(i,mE) = rhol * (0.5d0*(ul**2+vl**2) + & avgtabip(ql(i,mT),Ykl,hms,Nsp)) - pl qr(i,mE) = rhor * (0.5d0*(ur**2+vr**2) + & avgtabip(qr(i,mT),Ykr,hms,Nsp)) - pr endif c 110 continue c return end c