c
c ==========================================================
subroutine flgout3meu(q,mx,my,mz,lb,ub,qo,mxo,myo,mzo,lbo,ubo,
& lbr,ubr,shaper,meqn,nc,t)
c ==========================================================
c
c # Computes primitives for two-component Euler equations
c # for output and flagging.
c
c # Copyright (C) 2002 Ralf Deiterding
c # Brandenburgische Universitaet Cottbus
c
c # Copyright (C) 2003-2007 California Institute of Technology
c # Ralf Deiterding, ralf@cacr.caltech.edu
c
implicit double precision(a-h,o-z)
common /PhysData/ Wk, g, pinf, RU, PA
dimension Wk(2), g(2), pinf(2)
c
integer meqn, mx, my, mz, mxo, myo, mzo
dimension q(meqn,mx,my,mz), qo(mxo,myo,mzo)
dimension Xk(2), cap(2)
c
integer lb(3), ub(3), lbo(3), ubo(3), lbr(3), ubr(3), shaper(3),
& mresult, stride, imin(3), imax(3), i, getindx, d
c
stride = (ub(1) - lb(1))/(mx-1)
do 5 d = 1, 3
imin(d) = max(lb(d), lbr(d))
imax(d) = min(ub(d), ubr(d))
c
if (mod(imin(d)-lb(d),stride) .ne. 0) then
imin(d) = imin(d) + stride - mod(imin(d)-lb(d),stride)
endif
imin(d) = getindx(imin(d), lb(d), stride)
c
if (mod(imax(d)-lb(d),stride) .ne. 0) then
imax(d) = imax(d) - mod(imax(d)-lb(d),stride)
endif
imax(d) = getindx(imax(d), lb(d), stride)
5 continue
c
cap(1) = 1.d0 / (g(1)-1.d0)
cap(2) = 1.d0 / (g(2)-1.d0)
do 10 i = imin(1), imax(1)
do 10 j = imin(2), imax(2)
do 10 k = imin(3), imax(3)
c
if (nc.gt.5) then
gamma1 = 1.d0 / q(6,i,j,k)
gamma = gamma1 + 1.d0
p = gamma1*(q(5,i,j,k) - 0.5d0*(q(2,i,j,k)**2+
& q(3,i,j,k)**2+q(4,i,j,k)**2)/q(1,i,j,k) -
& q(7,i,j,k))
pin = q(7,i,j,k)*gamma1/gamma
Xk(1) = (q(6,i,j,k)-cap(2)) / (cap(1)-cap(2))
Xk(2) = 1.d0-Xk(1)
W = Xk(1)*Wk(1) + Xk(2)*Wk(2)
endif
c
c # Density
if (nc.eq.1) qo(i,j,k) = q(1,i,j,k)
c # Velocity u
if (nc.eq.2) qo(i,j,k) = q(2,i,j,k)/q(1,i,j,k)
c # Velocity v
if (nc.eq.3) qo(i,j,k) = q(3,i,j,k)/q(1,i,j,k)
c # Velocity w
if (nc.eq.4) qo(i,j,k) = q(4,i,j,k)/q(1,i,j,k)
c # Total energy density
if (nc.eq.5) qo(i,j,k) = q(5,i,j,k)
c # Temperature
if (nc.eq.6) qo(i,j,k) = p/(q(1,i,j,k)*RU/W)
c # Pressure
if (nc.eq.7) qo(i,j,k) = p
c # Gamma
if (nc.eq.8) qo(i,j,k) = gamma
c # Y1
if (nc.eq.9) qo(i,j,k) = Xk(1)*Wk(1)/W
c # Y2
if (nc.eq.10) qo(i,j,k) = Xk(2)*Wk(2)/W
c # pinf
if (nc.eq.11) qo(i,j,k) = pin
c # Speed of sound
if (nc.eq.12) qo(i,j,k) = dsqrt(gamma*(p+pin)/
& q(1,i,j,k))
c
10 continue
c
return
end