c c ========================================================== subroutine flgout3eu(q,mx,my,mz,lb,ub,qo,mxo,myo,mzo,lbo,ubo, & lbr,ubr,shaper,meqn,nc,t) c ========================================================== c c # Computes primitives for Euler equations for output c # and flagging. c c # Adaption based on pressure is often more intuitive. c c # Copyright (C) 2002 Ralf Deiterding c # Brandenburgische Universitaet Cottbus c c # Copyright (C) 2003-2007 California Institute of Technology c # Ralf Deiterding, ralf@cacr.caltech.edu c implicit double precision(a-h,o-z) common /param/ gamma,gamma1 common /PhysData/ Wk, RU, PA c integer meqn, mx, my, mz, mxo, myo, mzo dimension q(meqn,mx,my,mz), qo(mxo,myo,mzo) c integer lb(3), ub(3), lbo(3), ubo(3), lbr(3), ubr(3), shaper(3), & mresult, stride, imin(3), imax(3), i, getindx, d c stride = (ub(1) - lb(1))/(mx-1) do 5 d = 1, 3 imin(d) = max(lb(d), lbr(d)) imax(d) = min(ub(d), ubr(d)) if (mod(imin(d)-lb(d),stride) .ne. 0) then imin(d) = imin(d) + stride - mod(imin(d)-lb(d),stride) endif imin(d) = getindx(imin(d), lb(d), stride) if (mod(imax(d)-lb(d),stride) .ne. 0) then imax(d) = imax(d) - mod(imax(d)-lb(d),stride) endif imax(d) = getindx(imax(d), lb(d), stride) 5 continue do 10 i = imin(1), imax(1) do 10 j = imin(2), imax(2) do 10 k = imin(3), imax(3) c # Density if (nc.eq.1) qo(i,j,k) = q(1,i,j,k) c # Velocity u if (nc.eq.2) qo(i,j,k) = q(2,i,j,k)/q(1,i,j,k) c # Velocity v if (nc.eq.3) qo(i,j,k) = q(3,i,j,k)/q(1,i,j,k) c # Velocity w if (nc.eq.4) qo(i,j,k) = q(4,i,j,k)/q(1,i,j,k) c # Total energy density if (nc.eq.5) qo(i,j,k) = q(5,i,j,k) c # Temperature if (nc.eq.6) qo(i,j,k) = (Wk*gamma1*(q(5,i,j,k)-0.5d0* & (q(2,i,j,k)**2+q(3,i,j,k)**2+q(4,i,j,k)**2)/ & q(1,i,j,k)))/(RU*q(1,i,j,k)) c # Pressure if (nc.eq.7) qo(i,j,k) = gamma1*(q(5,i,j,k)-0.5d0* & (q(2,i,j,k)**2+q(3,i,j,k)**2+q(4,i,j,k)**2)/ & q(1,i,j,k)) c # Gamma if (nc.eq.8) qo(i,j,k) = gamma 10 continue return end