!----------------------------------------------------------------------- ! Physical boundary conditions for 3d equations. ! Zero order outflow at all sides. ! Interface: ! mx,my,mz := shape of grid ! ! u(,) := grid function ! ! lb(3) := lower bound for grid ! ub(3) := upper bound for grid ! lbbnd(3) := lower bound for boundary region ! ubnd(3) := upper bound for boundary region ! shapebnd(3) := shape of boundary region ! xc(3) := lower left corner of grid ! dx(3) := grid spacing ! dir := at which side of the grid is the boundary? ! bnd(,2,3) := lower left and upper right corner of global grid and ! of mb-1 internal boundary regions ! ! The implementation is quite general, because ! - a boundary region can have a width of 1 or 2 ghost cells. ! - corners of a grid might be part of two boundaries and it is NOT ! guaranteed that ALL cells of a particular corner region are ! contained in both boundaries. ! ! Copyright (C) 2002 Ralf Deiterding ! Brandenburgische Universitaet Cottbus ! ! Copyright (C) 2003-2007 California Institute of Technology ! Ralf Deiterding, ralf@cacr.caltech.edu ! !----------------------------------------------------------------------- subroutine physbd(u,mx,my,mz,lb,ub,lbbnd,ubbnd,shapebnd, & xc,dx,dir,bnd,mb,time,meqn) implicit none integer mx, my, mz, meqn, mb, dir integer lb(3), ub(3), lbbnd(3), ubbnd(3), shapebnd(3) double precision u(meqn,mx,my,mz), xc(3), dx(3), bnd(mb,2,3), time ! Local variables integer i, j, k, imin, imax, jmin, jmax, kmin, kmax, m integer stride, getindx !- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ! See definition of member-function extents() in BBox.h ! for calculation of stride stride = (ub(1) - lb(1))/(mx-1) !- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ! Find working domain imin = getindx(max(lbbnd(1), lb(1)), lb(1), stride) imax = getindx(min(ubbnd(1), ub(1)), lb(1), stride) jmin = getindx(max(lbbnd(2), lb(2)), lb(2), stride) jmax = getindx(min(ubbnd(2), ub(2)), lb(2), stride) kmin = getindx(max(lbbnd(3), lb(3)), lb(3), stride) kmax = getindx(min(ubbnd(3), ub(3)), lb(3), stride) go to (100,200,300,400,500,600) dir+1 ! Left Side --- Outflow !- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 100 continue do 110 i = imax, imin, -1 if (xc(1)+(i-0.5d0)*dx(1).lt.bnd(1,1,1)) then do 120 k = kmin, kmax do 120 j = jmin, jmax do 120 m = 1, meqn u(m,i,j,k) = u(m,i+1,j,k) 120 continue endif 110 continue return ! Right Side --- Outflow !- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 200 continue do 210 i = imin, imax if (xc(1)+(i-0.5d0)*dx(1).gt.bnd(1,2,1)) then do 220 k = kmin, kmax do 220 j = jmin, jmax do 220 m = 1, meqn u(m,i,j,k) = u(m,i-1,j,k) 220 continue endif 210 continue return ! Bottom Side --- Outflow !- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 300 continue do 310 j = jmax, jmin, -1 if (xc(2)+(j-0.5d0)*dx(2).lt.bnd(1,1,2)) then do 320 k = kmin, kmax do 320 i = imin, imax do 320 m = 1, meqn u(m,i,j,k) = u(m,i,j+1,k) 320 continue endif 310 continue return ! Top Side --- Outflow !- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 400 continue do 410 j = jmin, jmax if (xc(2)+(j-0.5d0)*dx(2).gt.bnd(1,2,2)) then do 420 k = kmin, kmax do 420 i = imin, imax do 420 m = 1, meqn u(m,i,j,k) = u(m,i,j-1,k) 420 continue endif 410 continue return ! Front Side --- Outflow !- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 500 continue do 510 k = kmax, kmin, -1 if (xc(3)+(k-0.5d0)*dx(3).lt.bnd(1,1,3)) then do 520 j = jmin, jmax do 520 i = imin, imax do 520 m = 1, meqn u(m,i,j,k) = u(m,i,j,k+1) 520 continue endif 510 continue return ! Back Side --- Outflow !- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 600 continue do 610 k = kmin, kmax if (xc(3)+(k-0.5d0)*dx(3).gt.bnd(1,2,3)) then do 620 j = jmin, jmax do 620 i = imin, imax do 620 m = 1, meqn u(m,i,j,k) = u(m,i,j,k-1) 620 continue endif 610 continue return end