Numerical Simulations of Gaseous Detonations


next up previous
Next: Initial Conditions Up: Detonations with One-Step Chemistry Previous: Detonations with One-Step Chemistry

Normalization

Under the assumption of a planar stationary detonation wave propagating with constant speed d the inhomogeneous Euler equations can be solved exactly. These planar one-dimensional solutions are used as initial conditions for all simulations with the one-step model.

Further on, all following computations for the one-step reaction model utilize dimensionless quantities. With

$\displaystyle \rho_0,\; p_0,\; u_0=0,\; Z_0=0,\; v_0=1/\rho_0 $

denoting the values in the unburned gas and

$\displaystyle v=1/\rho $

the employed normalization reads

$\displaystyle P = \frac{p}{p_0}\;, \;\; V = \frac{v}{v_0}\;, \;\; \bar{\rho} = \frac{\rho}{\rho_0}\;,
\;\; U_n,D = \frac{u_n,d^\star}{\sqrt{p_0 v_0}}\;, $

$\displaystyle \underline{E},\bar e = \frac{E,e}{p_0 v_0}\;,
\;\; Q_0 = \frac{q_0}{p_0 v_0}\;, \;\; E_0 = \frac{E_A/W_A}{p_0 v_0} $

and

$\displaystyle X_n=\frac{x_n}{L_{_{1/2}}/\bar K}$   with$\displaystyle \quad L_{_{1/2}}:=\int\limits_{0}^{1/2} \frac{dZ}{r(Z)}\;, $

where

$\displaystyle r(Z) := \frac{(1-Z)}{DV}\exp \left(\frac{-E_0^\star}{PV}\right)$   and$\displaystyle \quad
\bar K:=\frac{k}{\sqrt{p_0 v_0}} \;. $



Table of Contents      Home      Contact

last update: 06/01/04