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Cellular detonation and triple point structures

Self-sustaining detonations are inherently unstable and

exhibit transverse pressure waves that propagate per-

pendicular to the detonation front. The transverse

Schlieren and PLIF images of a regularly
oscillating detonation front in hydrogen-
oxygen-argon (image courtesy J. E. Shep-
herd, Graduate Aeronautical Laboratory,
California Institute of Technology).

waves form evolving

triple point patterns

at the detonation

front with severely

enhanced pressure,

temperature and

thereby reaction.

Despite consider-

able experimental

efforts, a general

model for the in-

stability and the

detailed flow field in triple points in detonations is not

available yet.

Objective of this work is to de-

cipher the detailed hydrodynamic

flow conditions in triple point

sub-structures under periodic and

transient conditions. In experi-

ments, basically two different con-

figurations have been qualitatively

distinguished.

Experimentally known
triple point structures.

Governing equations

The governing equations for detonation wave simulation are

the inhomogeneous Euler equations for multiple species

∂tρi + ∇ · (ρi~u) = Wi ω̇i ,
∂t(ρ~u) + ∇ · (ρ~u⊗ ~u) +∇p = 0 ,
∂t(ρE) + ∇ · ((ρE + p)~u) = 0 .

The equation of state follows the ideal gas law

p =
K∑
i=1

pi = RT
K∑
i=1

ρi
Wi

with hi(T ) = h0
i +

∫ T
T0
cpi(σ)dσ ,

which requires computation of T = T (ρ, e) from the implicit

equation

K∑
i=1

ρi hi(T )− ρe−RT
K∑
i=1

ρi
Wi

= 0 .

The reaction rates for detailed kinetics are

ω̇i =
J∑

j=1

(νrji − ν
f
ji)

[
k
f
j

K∏
l=1

(
ρl
Wl

) ν
f
jl

− krj
K∏
l=1

(
ρl
Wl

) νrjl
]
.

In here, all results were obtained with a mechanism for

H2−O2−Ar combustion with 34 elementary reactions and

9 species.

Numerical Methods

Numerical source term incorporation and extension to mul-

tiple dimensions with method of fractional steps. −→
Numerical decoupling of hydrodynamic and chemical time

steps.

Time-explicit 2nd order TVD shock-capturing method for

thermally perfect gases:

• Upwinding with Roe-linearization for thermally perfect

mixtures

• Avoids unphysical densities and energies by switching to

HLL

• Preserves mass fraction positivity

• Entropy and carbuncle fix

• 2nd-order MUSCL reconstruction

Source term integration:

• Standard solver for stiff ODE’s, e.g. semi-implicit

Rosenbrock-Wanner method

• Automatic stepsize adjustment to allow for an effi-

cient treatment of chemical time scales smaller than

the global time-step

Embedding of complex domains:

• Implicit boundary representation with level-set signed

distance function on Cartesian mesh

• Non-oscillating, 1st order accurate interpola-

tion/extrapolation to construct ghost cell values

• Mirroring of the primitive values ρi, u, p and inversion

of normal velocity component by

u′ = (2w · n− u · n)n + (u · t)t = 2 ((w − u) · n) n + u

Blockstructured AMR:

• Patch-based refinement of shock and reaction front,

and embedded boundaries

• Spatial and temporal refinement

• Blockstructured data guarantees high computational

performance

Our framework AMROC provides a generic MPI-parallel,

object-oriented implementation of the blockstructured

AMR method that is applicable to any explicit FV scheme.

• Data of all levels resides on same node → most AMR

operations are local

• Distribution algorithm: generalization of Hilbert’s

space-filling curve

Recent scalability improvements for AMROC

• Parallelization of space-filling curve computation

• Reduction of topological operations on global metadata

to strictly local ones

Weak scalability data for a typical non-reactive spherical shock ex-
pansion problem (periodically replicated). Two additional levels with
refinement factors 2,4. Mesh adaptation and parallel re-distribution in
every time step.

Regular detonation structures in 2d

• Mixture: H2 : O2 : Ar at molar ratios 2:1:7 at initially

298 K and 10 kPA

• Initialization with Chapman-Jouguet ZND solution and

an irregular pocket to quickly trigger symmetry break-

ing. Tube width 3.2 cm

• Simulation until a single perturbation has developed into

two regularly oscillating cells with width λ = 1.6 cm

• 67.6 Pts/lig. 4 additional refinement levels (2,2,2,4) on

base mesh 2000× 128

• Compute triple point trajectories by tracking the mag-

nitude of the vorticity on a uniform mesh at level 1

Left: Oscillating detonation front on computed triple points tracks.
Right: Schlieren plot on refinement levels.

Left: Front on triple point tracks. 10µs between snapshots (marked
with stars in (M,S)-plane, cf. right column). Middle and right: Clearly
established DMR pattern shortly before triple point collision.

p/pA ρ/ρA T [K] v[m/s] M
A 1.00 1.00 298 1775 5.078
B 31.45 4.17 2248 447 0.477
C 31.69 5.32 1775 965 1.153
D 19.17 3.84 1487 1178 1.533
E 35.61 5.72 1856 901 1.053
F 40.61 6.09 1987 777 0.880  10
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States and shock polar analysis for a DMR structure shortly before next
collision. at ≈ 60 m/s used.

Detonation structure in smooth pipe bends

• Initialization with 5 regularly oscillating detonation cells,

same mixture as above, tube with 8 cm

• Pipe bend with radius 8 cm. Angle α = {15o,30o,45o}
• 67.6 Pts/lig. 4 additional refinement levels with factors

(2,2,2,4)

• Adaptive computations use ∼ 7 · 106 cells (∼ 5 · 106 on

highest level) instead of ∼ 1.2 · 109 cells (uniform grid)

• ∼ 70,000 h CPU each on 128 CPUs Pentium-4 2.2 GHz

Color plot of T and schlieren plot of ρ on triple point tracks and on re-
finement regions (middle, right) for α = 45o after t = 150µs simulated
time.

Top: Front on triple point tracks after the
bend for α = 15 (shown rotated). Right, top:
Strengthening of DMR pattern (open triangles)
under expansion at 130µs and 140µs simu-
lated time. Right, bottom: Weakening TMR
in over-driven region (open squares) at 130µs
and 140µs.

Triple point re-initiation with
change from TMR to DMR (open
circles) when the oscillation be-
comes regular again after the
bend, α = 15 at 200µs, 210µs,
and 220µs.

Bottom: Triple point quenching
and failure as SMR in over-driven
compression region for α = 30 at
140µs, 150µs (closed triangles)

Oblique shock relations

Apply jump conditions to steady shock wave described by

2D Euler equations.

ρ0u0,n = ρun
p0 + ρ0u

2
0,n = p+ ρu2

n

ρ0u0,nu0,t = ρunut
h0 + 1

2u
2
0,n = h+ 1

2u
2
n

f
q

u0

u0,t

u0,n
u

un

ut

For thermally perfect mixtures with hi(T ) =

h0
i +

∫ T
T0 cpi(T

?)dT ? one solves

RT0

u0,n
+u0,n−

RT

un
+un = 0 with un =

√
u2

0,n − 2
∫ T
T0

cp(ν)dν

numerically

Shock polar analysis of triple points in detonations

• Neglect reaction, but consider cpi(T )

• Data extracted point-wise from simulation

• Primary triple point T travels exactly at tip of Mach

stem −→ use oblique shock relations between A and B

ρAuA = ρBuB,n
pA + ρAu

2
A = pB + ρBu

2
B

to evaluate inflow velocity

as

uA =

√√√√ρB(pB − pA)

ρA(ρB − ρA)
/ sinφB

• Measure inflow angle φB between Mach stem and triple

point trajectory

• However, velocity a of T’ relative to T cannot be derived

easily. Oblique shock relations across C and D hold true

both for T and T’ −→ an ≡ 0, at arbitrary. Use estimate

at ≈ LR/∆tinit

Transition criteria

Transition between regular reflection (RR) and irregular re-

flection: MT
B = 1 with RR for MT

B > 1

Transition between single Mach reflection (SMR) and tran-

sitional or double Mach reflection (TMR/DMR): MT
C = 1

with TMR/DMR for MT
C > 1

Transition between TMR and DMR: MT ′
C = 1 with DMR

for MT ′
C > 1

For now, we use MT ′
C ≡ 1 to find the TMR/DMR transition

lines for given at numerically, i.e.

u2
C,n + (uC,t − at)2 = γC

pC
ρC

yields

at = uC,t −
√
γC
pC
ρC
− u2

C,n .

Use oblique shock relations and transition criteria to nu-

merically find transition boundaries of different shock wave

reflection phenomena for non-reactive mixture H2 : O2 : Ar
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2 : 1 : 7 at T0 = 298 K

and p0 = 10 kPA. Specially

geared to detonations, re-

sults are displayed (left)

in the plane defined by

the relative strength S =
pC−pD
pD

and the inflow Mach

number M

Re-initiation detonation wave with very strong DMR and own triple
point on reflected shock wave for α = 45 and 200µs, 210µs simulated
time (closed diamond)

Conclusions

Non-reactive, thermally perfect shock wave reflection the-

ory is applicable to explain observed reflection patterns in

detonations

• Triple point type is determined solely by S and M

• Still missing: suitable estimate for at

Observations

• Stable structures exist only in the TMR/DMR, but not

in the SMR regime

• TMR domain is rather small for typical values 50 m/s <

at < 100 m/s

• A change of type happens especially in triple point col-

lisions

References

RD. Parallel adaptive simulation of weak and strong detonation transverse-wave det-
onation structures in H2 −O2 detonations. In R. Biswas et al., editors, Parallel CFD
2009, pages 519–534, DEStech Publications, Lancaster, 2010.

RD. A parallel adaptive method for simulating shock-induced combustion with detailed
chemical kinetics in complex domains, Computers & Structures, 87: 769–783, 2009.


